
Zoomie: A Software-like Debugging Tool for FPGAs
Tianrui Wei

tianruiwei@eecs.berkeley.edu
UC Berkeley
Berkeley, USA

Kevin Laeufer
laeufer@eecs.berkeley.edu

UC Berkeley
Berkeley, USA

Katie Lim
katielim@cs.washington.edu
University of Washington

Seattle, USA

Jerry Zhao
jerryz123@eecs.berkeley.edu

UC Berkeley
Berkeley, USA

Koushik Sen
ksen@eecs.berkeley.edu

UC Berkeley
Berkeley, USA

Jonathan Balkind
jbalkind@ucsb.edu
UC Santa Barbara
Santa Barbara, USA

Krste Asanović
krste@berkeley.edu

UC Berkeley
Berkeley, USA

Abstract
FPGA prototyping has long been an indispensable technique
in pre-silicon verification as well as enabling early-stage
software development. FPGAs themselves have also gained
popularity as hardware accelerators deployed in datacenters.
However, FPGA development brings a plethora of problems.
These issues constitute a high barrier towards mass adoption
of agile development surrounding FPGA-based projects.

To address these problems, we have built Zoomie for fast
incremental compilation, reusing verification infrastructure,
and a software-inspired approach towards open-source em-
ulation. We show that Zoomie achieves 18× speedup over
the vendor toolchain in incremental compilation time for
million-gate designs. At the same time, Zoomie also provides
a software-like debugging experience with breakpoints, step-
ping the design, and forcing values in a running design.

ACM Reference Format:
Tianrui Wei, Kevin Laeufer, Katie Lim, Jerry Zhao, Koushik Sen,
Jonathan Balkind, and Krste Asanović. 2024. Zoomie: A Software-
like Debugging Tool for FPGAs. In 29th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Volume 3 (ASPLOS ’24), April 27-May 1, 2024,
La Jolla, CA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3620666.3651356

1 Introduction
FPGA-based prototyping refers to compiling hardware de-
signs down to bitstreams run on an FPGA and using the
FPGA to test the behavior of the hardware design interfac-
ing with different physical inputs and outputs (IO), such as
DDR or Ethernet. Its unique ability to interface with real
IOs, coupled with its four orders of magnitude speedup over

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651356

cycle-accurate software RTL simulation [27], makes it in-
dispensable for hardware verification and pre-silicon soft-
ware development [26] However, despite its wide adoption
in both academia and industry, FPGA prototyping has the
grave drawback of lacking a software-like development envi-
ronment. Compilation times are often on the order of hours
if not days, and the vendor-provided debugger [10] can only
observe a very limited set of signals and needs to be recom-
piled in order to observe different signals. Current FPGA
prototyping focuses on finding bugs post-mortem, which
makes finding out where the problem is (bug localization)
and why it is happening much more challenging.

By contrast, the software world enjoys a much richer
portfolio of debugging techniques, such as reverse debug-
ging and full instrumentation with comprehensive debug-
ger support [7, 17, 25, 40, 41]. These techniques enable de-
velopers to introspect and manipulate their program exe-
cution in a flexible manner. We argue that for agile hard-
ware development to fully materialize, we must build de-
bugging tools that offer similar functionalities. Although
recent works [11–13, 34, 48, 51, 52, 59, 62] try to address
some of these problems, studies [3] show that better debug-
ging infrastructure is still needed for FPGA development.The
aforementioned issues still persist if they are not addressed
in an organic, coherent manner as a whole.

In this paper, we present Zoomie. Zoomie democratizes
FPGA prototyping and debugging by providing a coherent
set of components that give users the same abstraction as
modern software debuggers for FPGA prototyping. Users
can enjoy full visibility of their FPGA during execution, re-
compilation time in minutes, breakpoints, snapshots, and
replaying FPGA execution for arbitrary RTL designs. Zoomie
is also the first FPGA debugging platform to exploit specific
features of state-of-the-art chiplet-based FPGAs [57], which
are commonly used throughout the industry, such as inside
Amazon EC2 F1.

We summarize the features of Zoomie as follows:
Blazing Fast Incremental Compilation In Vivado, a

single line change can trigger hours of rebuild time, and the
speedup for the vendor incremental compilation mode is
usually around 10% over the baseline. We propose a new

https://orcid.org/0000-0002-3450-216X
https://orcid.org/0000-0003-0942-7070
https://orcid.org/0009-0003-1303-0954
https://orcid.org/0000-0002-9307-2956
https://orcid.org/0000-0002-4539-9188
https://orcid.org/0000-0003-1443-1373
https://orcid.org/0000-0003-0754-3975
https://doi.org/10.1145/3620666.3651356
https://doi.org/10.1145/3620666.3651356
https://doi.org/10.1145/3620666.3651356


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Wei et al.

paradigm of incremental compilation based on Dynamic
Function Exchange (DFX). With Zoomie, users can easily
iterate on the design with a turnaround time of minutes
rather than hours. We argue that this is the most important
part of providing an agile FPGA debugging experience, as
the same debugging methods could be performed more than
100× in this context.

Reusing Verification Infrastructure We enable reuse
of existing verification infrastructure in FPGA debugging.
In particular, we exploit SystemVerilog Assertions, a key
component in modern verification infrastructure which can
encode the system’s expected behavior in linear temporal
logic (LTL). They are commonly used throughout the verifi-
cation lifecycle, from simulation to formal verification.

Software-Like Debugger Lastly, we propose a software-
inspired approach towards open-source emulation, imple-
menting many features only available in commercial systems
and software debuggers.We achieve this by deeply investigat-
ing the Xilinx FPGA architecture, bringing to light formerly
opaque details surrounding the FPGA flow. We demonstrate
how to use this knowledge to implement a software-like
debugger with features like breakpoints, watchpoints, and
single stepping. We also are the first work to support modern
multi-chiplet FPGAs, with supported FPGA sizes exceeding
10× the prior work [57].

We show how we combine these features into Zoomie1,
an accessible, open-source platform that provides a software-
like debugging experience on FPGAs. We target off-the-shelf
FPGA boards and demonstrate an 18× speedup in compila-
tion time.

2 Background
2.1 Challenges with FPGA prototyping
FPGA prototyping is a vital part of the hardware verification
process. However, its vast advantage in speed comes at great
costs. We classify the problems into three categories:

Incompatibility with existing verification infrastruc-
ture SystemVerilog [4] is split into synthesizable and un-
synthesizable subsets [49]. However, commonly used veri-
fication infrastructure like SystemVerilog Assertions (SVA)
or Universal Verification Methodology (UVM) [5] are not
synthesizable. FPGA tools only support the synthesizable
subset, thus making existing verification infrastructure in-
compatible with FPGA prototyping. As such, bugs are usually
discovered post-mortem, with a software crash or return of
the wrong result.
Ultra-long compilation time Compilation time for FP-

GAs can easily reach hours to days. This makes debugging
iteration times long and hampers rapid development.

Lack of support for debugging tools Lastly, debugging
instruments provided by FPGA vendors like Integrated Logic
Analyzers (ILA) are print-style debugging [19]. These can
1https://github.com/zoomie-project

Top ModuleDUT

Module #1

Module #2 Module #3

Figure 1. The traditional debugging process for an end user.
Repeated recompilation and inspection localizes the bug
before iterative bug fixes are tested.

only observe specific signals over time without mutating
design state and need users to specify the signals to monitor
ahead of compilation, which is further hindered by long com-
pilation times. There is also a very limited subset of signals
a user could observe with each compilation, as ILA adds a
substantial hardware overhead. Finally, there are no off-the-
shelf debugging tools to support breakpoints. With all these
drawbacks, fixing bugs in FPGAs is extremely challenging.

2.2 Motivating Example
Here we use a simple running example based on MAPLE/Co-
hort [42, 55] andOpenPiton+Ariane/BYOC [14, 60] to demon-
strate issues commonly encountered in FPGA prototyping.
We find a bug described in Cohort’s development logs, which
caused the design to return the wrong TLB lookup in the
wrong sequence. We highlight the piece of code we omit in
pink.

assign ack = tlb_sel_r == i & id == i ;

In this case, the users have an existing design that runs
on an FPGA, and they would like to debug it with a software
stack running on top. However, their only observation is
that the software is not working. Following the official Xilinx
Documentation, they marked some signals for debugging
with an ILA [19]. The user had to iteratively mark signals
and recompile to get to the bottom of the issue, where each
attempt took around 2 hours. Lastly, to test the bug fix took
another 2 hours. This process is depicted in Figure 1 and
described further in Section 5.5. We summarize the problem
with this process as follows:

First, bug localization requires iterative re-compilation.
By contrast, there are many ways for users to localize bugs
in software [7, 17, 25, 40, 41]. Here, the user could only guess
where the bug might lie, then recompile the design iter-
atively. Despite the SystemVerilog specification’s [4] rich
verification constructs, most vendor tools do not support

https://github.com/zoomie-project


Zoomie: A Software-like Debugging Tool for FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

them. This further undermines bug localization, as checks
from simulation do not apply in FPGA.

In addition, there’s little to no incremental compilation
in commercial toolchains. Even with small changes, each
run still takes almost as long as the initial run. Combined
with the need to recompile the design for bug localization,
debugging becomes a very slow and manual process.

Lastly, end users suffer from poor introspection ability.
Unlike software debuggers with rich breakpoints, watch-
points, and an assortment of debugging facilities, the ILA is
very limited in its functionality. It can only observe the de-
sign over a short window of cycles rather than interactively
explore different execution paths.

These three drawbacks are detrimental to providing the
kind of agile, productive debugging experience on FPGAs
that we work toward. Zoomie provides users with a software-
like interface for FPGA debugging. Users can insert custom
breakpoints or watchpoints on the fly, which pause the de-
sign when they are triggered. From there, users can choose
to continue executing the design, or to manipulate the state
of the snapshot to test different execution scenarios.

For existing verification infrastructure, Zoomie synthe-
sizes SVAs efficiently and converts them into breakpoints.
Any violation of the assertions pauses the design, where the
user can then investigate its state. Later, when users would
like to change their design, Zoomie offers a way to incre-
mentally compile the design with more than 18× speedup.

Zoomie’s abilities, in sum, offer a software-like debug-
ging experience on FPGAs. By contrast, traditional FPGA
debugging is much more primitive and inefficient.

3 Zoomie architecture
Zoomie combines three components to enable fast and inter-
active debugging as illustrated in Figure 2. Pausing, resum-
ing, and inspecting the FPGA state is achieved by the Debug
Controller, which provides the user with the interface to
inspect and manipulate the design’s state. It consists of a
hardware component inserted into the user design and com-
municates with software on the host computer to control
and debug the design running on FPGA. TheAssertion Syn-
thesis compiler generates breakpoint triggers from SVAs by

User 
Design

Design

Vendor ToolVTIAssertion 
Transformation

User

Debug 
Controller

Figure 2. Design overview of Zoomie. Elements in blue
denote Zoomie components.

turning them into synthesizable state machines. Once a bug
is found, our VTI (Vendor Tool Incrementalizer) component
enables fast incremental synthesis and place and route, dras-
tically reducing the time it takes to go from RTL changes to
an updated design executing on the FPGA.

3.1 Pausing the design with the Debug Controller
Zoomie provides the ability to halt the design during exe-
cution, similar to software breakpoints. Halting the design
can be initiated using an internal trigger signal like a failed
assertion. It can also be initiated by the user from the host
computer, for example, when they observe unexpected be-
havior or design hangs. Pausing part of the design for de-
bugging faces two major challenges: (1) the pause needs to
be timing precise, meaning that we can stop the design in
the exact cycle that a trigger is activated and (2) we must be
able to resume execution of a paused design.

Both problems are addressed by the Debug Controller.This
RTL component is placed as a wrapper around the module
under test (MUT), i.e., the part of the design the user is cur-
rently testing. The MUT can be fairly large; we selected a
complete processor tile in one of our case studies. This works
best (i.e. requires least designer effort) when the MUT com-
municates via decoupled interfaces. These are regularly used
in hardware designs today, providing benefits in scalability,
simulation speed, and formal reasoning [20, 22, 37].

Timing-Precise Pausing. TheDebug Controller contains
a clock gate enabling it to stop the MUT’s clock. To en-
sure a glitch-free and precise pause, Zoomie makes use of
FPGA vendor-provided clocking primitives. Once a design is
paused, we can inspect and update the state of all its registers
and memories. We detail several uses of this functionality in
sections 3.2 and 3.3.

Resuming a Paused Design. While merely clock-gating
the MUT is enough to stop its execution, it will not allow us
to resume execution safely. The modules outside the MUT
will continue executing and could end up in an invalid state
in which the execution of the complete design becomes im-
possible. We thus designed a novel pause buffer which
interposes a (preferably decoupled) interface to enable safe
pause and resume.

We illustrate the issue of incorrectly pausing the design
with the waveform in Figure 3. The valid and ready signals
form a latency-insensitive interface within the same clock
domain. However, the clock for the valid signal can be gated,
whereas the ready signal is driven by ext_clk, which is never
gated. In the diagram, the interface successfully performed
a handshake during cycle 2 (t1) and 4 (t2). However, because
the clock for valid is gated at cycle 5 (t3), it never gets de-
asserted. The other module driving the ready signal does not
know that the valid signal asserted in cycle 5 is due to clock
gating rather than another transaction. This violates the se-
mantics of the original RTL and can cause system hangs.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Wei et al.

To combat this issue, Zoomie provides a set of formally
verified pause buffers as part of the Debug Controller. These
modules ensure the following:

1. If the requester initiates a transaction and is paused,
the pause buffer continues to perform that transac-
tion and passes the value to the responder when it is
resumed.

2. If either the requester or responder is paused at the
cycle of a transaction, the pause buffer restarts the
transaction for the paused interface after it resumes.

3. If the requester has no pending transaction, the pause
buffer does not incur a one-cycle latency between.

These modules are timing exact and ensure that pausing
and resuming the design will not violate the interface pro-
tocols. With these, the Debug Controller supports pausing
across module boundaries. It also supports different flavors of
latency-insensitive interfaces, such as irrevocable interfaces,
which dictate that a valid signal must stay high until the
ready/ack signal is high. For other forms of timing-dependent
interfaces, the designer can consider the Wire Sorts [22] and
protocol behaviour to correctly apply the pause buffer.

3.2 State Extraction
Once a design is paused, Zoomie uses the readback function-
ality provided by the FPGA vendor to retrieve the values of
all state elements in the MUT. Zoomie then parses the binary
data and matches it up with names of registers and memories
in the RTL description of the design. Metadata generated by
the vendor toolchain makes this capability possible, but a
custom program is required to match the readback with the
RTL names and provide output helpful to a user.

3.3 Manipulating Design State
Zoomie also enables the user to manipulate all register and
memory values in their design. Similar to a software de-
bugger, this enables a designer to explore different runtime
behaviors without the need to restart or recompile a design.

This can be used to deliberately hide known bugs that are
difficult to hit in order to preserve emulation progress. Given
a bug may take trillions of cycles to detect, if a user fixes the

0 1 2 3 4 5 6

gated_clk

valid

ext_clk

ready

t1 t2 t3

a c e

b d f

Figure 3. Example of a protocol violation when pausing the
design incorrectly.

bug, they then have to restart their simulation and poten-
tially wait trillions of cycles again to evaluate their fix. The
preferable flow would instead be that the user can resume
from a snapshot with the correct values in respective signals
and replay the snapshot back on FPGA. If the bug is diffi-
cult to trigger, this releases the potential of losing emulation
progress and enables extremely long-running benchmarks
without interruption.

3.4 Pausing the Design with Internal Triggers
The Debug Controller contains three main sources of inter-
nal triggers: (1) value breakpoints that become active when
a user-selected signal takes on a certain value, (2) a cycle
breakpoint that becomes active after a user-specified number
of clock cycles and (3) assertion breakpoints that become
active when an SVA in the design fails.

Trigger Composition. All three sources of triggers can
be arbitrarily combined through Algorithm 1. State manip-
ulation capabilities introduced in Section 3.3 are used to
reconfigure the trigger selection on the fly.

Algorithm 1 Debugger breakpoint algorithm
1: procedure Breakpoint(B86=0;_;8BC ) ⊲ a list of signals

to use as inputs
2: for B868 ∈ B86=0;_;8BC do
3: �41D664A ← �=3<0B:8
4: �41D664A ← $A<0B:8
5: �41D664A ← '4 5 E0;8
6: �=38 ← (B868 == '4 5 E0;8 ) ∧ �=3_<0B:8

7: $A8 ← (B868 == '4 5 E0;8 ) ∨ $A_<0B:8

8: end for
9: �=3_BC>? ← ∧8 �=38

10: $A_BC>? ← ∨8 $A8
11: (C>? ← (�=3_BC>?∧�=3_B4;)∧ ($A_BC>?∧$A_B4;)
12: end procedure

In Algorithm 1, each signal with a subscript is associated
with a signal in the signal list. These intermediate signals are
generated to control the mask generation process, so users
can freely specify their triggers.

The overall stop signal is always assigned as follows.

(C>? = (�=3B4; ∧ (∀8 .(B868 == '4 5 E0;8 ) ∧�=3_<0B:8 )) (1)

Stepping the Design. Similarly to gdb’s ‘until’ commands,
Zoomie’s cycle breakpoint executes the design for a pro-
grammable number of cycles. This enables the user to do
interesting things, such as stepping the design for a few cy-
cles to observe its state or to skip over a specific part of the
execution. Users can also dump the design periodically to
snapshot different states of execution and replay those snap-
shots later. This is implemented by a special register inside
the Debug Controller that counts the number of cycles the
design should execute until pausing.



Zoomie: A Software-like Debugging Tool for FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Assertion Breakpoints. We enable the user to use SVAs,
which are commonly used to detect failing designs in simu-
lation and for proving properties of designs through formal
verification. The following snippet shows a simple example:

ack_valid: assert property
(@(posedge clk) disable iff (!resetn)
valid |-> #1 ack);

This assertion checks that whenever the valid signal is
high, the ack signal should be high one cycle later.The values
of the signals are sampled on the rising edge of the clock,
and the assertion is disabled when the resetn signal is low.

Zoomie can automatically pause a design when an SVA
property is violated.This feature is enabled by ourAssertion
Synthesis compiler which extends Yosys [56] with support
for synthesizing SVAs to finite state machines. These are
executed on the FPGA alongside the MUT. Assertion break-
points can be dynamically disabled and combined with other
breakpoint types as needed.

3.5 Smart Compilation for Debugging with VTI
Compiling a design for an FPGA often takes a few hours or
even days [59]. In comparison, compilation for software de-
velopment typically takes seconds to minutes, even for very
large projects. We observe that existing FPGA toolchains,
even with vendor-provided incremental compilation, suffer
from long compilation times because compilation runs do
not reuse any (or enough) results from prior compilation.

A summary of the compilation processes’ differences in
software, Vivado, and VTI is shown in Table 1. In software,
compilations are mostly performed locally, on a per-file basis.
The results are linked together in the end into a single exe-
cutable. In comparison, Vivado treats designs in a monolithic
manner. During the synthesis stage, it always produces a
large netlist with optimizations across module boundaries.
Subsequently, the netlist is placed and routed in the same
monolithic fashion. In software terms, this is like inlining all
functions across all the files into the main function and per-
forming optimization on the monolithic program. Toolchains
have the opportunity to perform aggressive optimizations
across modules, but small changes in RTL could have a big
impact on the optimized netlist.

Shown in Figure 4, VTI takes inspiration from the tra-
ditional software compilation process and takes a point in
the middle by splitting the design into multiple partitions
based on designer input. Subsequent compilations are done
in parallel within each partition, and the linking happens in
the end for all partitions together. Each partition can also be
loaded onto the FPGA independently, which can drastically
reduce the time it takes to load an updated design on an
FPGA.

The user partitioning takes the form of a list of modules.
VTI then guides Vivado to perform parallel synthesis on
different partitions of RTL independently. Each partition can

Table 1. Comparison of compilation processes

Compilation unit Optimization Linking

Software function local after compilation
Vivado whole design global not required

VTI partition partition-local after routing

then be independently placed and routed in its respective
physical region by the FPGA toolchain.

Our formula for FPGA resource provisioning balances
the trade-off between resource utilization and compilation
time. For resource estimation of a single type of resource,
we use the following formula, where �' is the estimated
resource usagewithin each partition, A4B>DA24 is the resource
usage from the synthesized netlist, 2 is the over-provision
coefficient to trade-off area for timing.

�' = A4B>DA24 ∗ (1 + 2)
To estimate the overall required area for each partition,

we use the following formula, where �C>C0; represents the
physical resources available within this area. We ensure that
the each type of resource available on the partition is always
greater than of the corresponding estimated usage.

�C>C0; ≥ max
A4B>DA24

�'

We use this estimate to provision FPGA resources to en-
able partial static linking of FPGA design fragments.

VTI guides Vivado to place all modules being debugged
inside one FPGA chiplet to minimize cross-chiplet commu-
nication within debugged modules. Given debugging is typi-
cally focused on specific subcomponents of the design, we
think it is reasonable to assume a user’s region of interest can
fit inside a chiplet. Most Alveo UltraScale+ FPGAs feature
three or four chiplets, meaning the designer can focus their

Static Iterated Modules

Synthesis Synthesis Synthesis

Estimate Estimate

P & R P & RP & R

User Design

Designer Input

Design Split, Reset Insertion

Figure 4. High-level design of our incremental flow



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Wei et al.

Bootup

Executing 
Bitstream

Clock
Reset

Assisting 
Dataflow

Interrupt

Idle

Idle

Idle

Dataflow

Idle

Control Plane Data Plane

Figure 5. FPGA configuration flow recap. The left portion
shows the steps that are run by the microcontroller, and the
right shows what is executed in the FPGA fabric.

debugging effort on a reasonably large portion of their entire
design.

4 Xilinx Features to Implement Zoomie
In this section, we show how Xilinx FPGAs work under the
hood and demonstrate implementing features in Zoomie
with these underlying capabilities. Zoomie utilizes these
low-level capabilities to achieve rich functionality with little
overhead.

4.1 Xilinx Configuration Flow
During configuration, the host machine running Vivado
transmits the bitstream to a microcontroller (`c), which inter-
prets it as a program. Broadly speaking, there are two types
of instructions: the first type writes to special registers of the
`c, and the second type writes to a memory-mapped address,
which corresponds to a specific LUT or BRAM in the design.
The process of configuration is summarized in Figure 5.

When the entire bitstream has finished execution on the
`c, the bitstream programmer (Vivado, generally) thenwrites
to another special register that starts the clock and raises
the global set-reset (GSR) signal for all LUTs. After a certain
period, the GSR is lowered to finish the reset process, and
all logic begins its normal execution.

4.2 Controlling Clock and Reset in FPGA
Clocking is an indispensable part of digital design. Xilinx
provides primitives to correctly handle different kinds of
clocking topology. Further, clock gating/mux cells provide
Zoomie with the ability to pause and unpause areas of the
design mapped to the FPGA.

For reset, Xilinx provides two different ways to distribute
reset into the entire system. There is a global reset signal
that could distribute the reset signal to the entire FPGA, and
there is high-speed backbone circuitry to distribute the reset
signal faster. In addition, users could use masks that Xilinx
provides to further manipulate the distribution of reset in a
fine-grained manner.

Both of these mechanisms can be controlled via writes to
global registers through the configuration `c.

4.3 Chiplet Connections between FPGAs
FPGA vendors use chiplet technology to expand the ca-
pacity and reduce costs of their FPGAs [1, 2, 21]. Chiplet-
based FPGAs consist of multiple dies connected by an inter-
poser [46, 57]. Although each die in these FPGAs is almost
identical to monolithic chips, our mental model of under-
standing needs to be adapted to the newer generation of
FPGAs. In Xilinx’s terminology, each die is called an SLR (Su-
per Logic Region). For multi-SLR FPGAs, there is a primary
SLR that commands the other - secondary - SLRs. Xilinx has
not documented the mechanism through which the primary
SLR communicates with the secondary SLRs. However, un-
derstanding this mechanism is essential for reading back
state from the FPGA. In a monolithic Xilinx FPGA, the state
can be read by writing a special “readback” command to a
command register, which specifies where to read from [6].
However, the means of specifying which SLR to read from
was an open question.

In Bitfiltrator [28], the authors hypothesized that different
SLRs are distinguished from one another by having separate
IDCODEs, because instruction sequences inside the bitstream
do contain writes of different IDCODEs for each chiplet. How-
ever, this is not the case. To show that, we instantiate 3
registers that initialize to different constants at reset, con-
strain each one to reside on a different chiplet using Vivado
Tcl commands, and turn off optimizations. Now, when we
attempt to read the register values, we follow the readback
method used for monolithic FPGAs, except we inject the
same IDCODE values that appeared in the writes in the origi-
nal bitstream. In practice, we observed that no matter what
IDCODE value is written to the register, the value we get from
readback is always the constant of the register constrained
to the primary SLR. Thus the writes into the IDCODE field
yield no actual effect in this situation.

4.4 Hidden Instructions to Select SLRs
Since the IDCODE method hypothesized by the authors of
Bitfiltrator clearly does not work, we started looking for
undocumented bitfields and register names in the bitstream
specification. In particular, we paid close attention to repe-
titions of 0xFFFFFFFF and 0xAA995566. The former is a
dummy padding that is used to compensate for the wait time
to avoid the `c being busy. The latter is used to synchronize
the start of a command sequence.



Zoomie: A Software-like Debugging Tool for FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

µc
µc µc

µcµc

Figure 6. Potential views of a Xilinx multi-chiplet FPGA.
Left: Logical view; Right: Our understanding.

During this process, we found writes to an undocumented
“BOUT” register. However, all the writes contained empty
data. For a U200 with three SLRs, the bitstream can be di-
vided into three roughly equivalent chunks. This write does
not occur when the bitstream is configuring the primary
SLR. However, it appears once before configuring the first
secondary SLR and appears twice before configuring the
second secondary SLR. We extrapolate that empty writes to
this special register, followed by appropriate padding, act
as a switch to direct the JTAG operations to different SLRs.
Once directed, all the JTAG operations only work for that
particular SLR until these writes appear again.

In addition, because all the writes to other configuration
registers need to be duplicated for each SLR, we conclude
that each SLR is just a complete FPGA on a chiplet, the JTAG
bus between microcontrollers has a ring topology, and each
operation only affects a single SLR.

4.5 Hypothesis Validation
With the hypothesis that this special write, instead of device
ID (IDCODE), controls the operation within the bitstream, we
proceed with the following experiments to show that our
hypothesis is correct.

Reading Back from Different SLRs. Using the same pat-
tern and the testcase shown above, we are able to successfully
retrieve logic values stored in registers of each of the SLRs.

Verifying Repetition Pattern. To verify that the SLRs
are indeed connected via a ring topology, we also test our
technique on an Alveo U250, which consists of 4 SLRs instead
of 3. We note that the final SLR can be reached by pulsing
the “BOUT” write 3 times. This validates that the pattern of
repetition is simply incremented by one.

Mutating Device ID in Bitstream. We change the device
ID of the secondary SLRs the bitstream writes to and observe
the readback result (following Bitfiltrator). We notice that
although this device ID is required by monolithic FPGAs for
verification purposes, the ID value of secondary SLRs does
not impact the readback result, as only writing to “BOUT”
selects the SLR targeted by control commands.

4.6 Controlling FPGA Chiplets
With this in mind, we conclude that JTAG could only con-
trol one chiplet at a time. However, the chiplets are also
connected through many wires on the interposer. We formu-
late the following two ways of controlling logic on different
chiplets as a foundation for building Zoomie. Controlling
SLRs synchronously means multiple SLRs will need to be
accessed on the same cycle in order to retrieve the contents
in the FPGA, while asynchronously means the logic that
needs pausing will be restricted within a single SLR.

Controlling Different SLRs Locally/Asynchronously.
In the case where we would like to inject values or pause
a part of the logic, we would try to limit that region to be
within a single physical SLR in order to minimize logic delay
across different dies. In this case, different SLRs would be
controlled by their local `c only, and we could select the
appropriate `c through JTAG.

Controlling Different SLRs Globally/Synchronously.
When we have big designs or logic blocks that will span
multiple SLRs, we would control the stepping of the entire
design through the primary SLR only. However, scanning out
values in the design is still the job of the SLR-local controller.

4.7 Composing Xilinx features into Zoomie features
Given these primitives, we show below how we compose
them into Zoomie’s features.

Design Pausing. Zoomie leverages the glitch-less clock
mux in Xilinx FPGAs as well as the Pause Buffer from Sec-
tion 3.1. When Zoomie tries to pause the design in the next
cycle, it will lower the clock enable signal going into the de-
sign and Pause Buffer, and resume when the pause finishes.

Design Stepping. To single-step the design for a pre-
specified number of cycles, Zoomie uses a 64-bit hardware
counter to keep track of remaining cycles to execute as well
as if there is any single-step ahead. Before resuming the de-
sign, Zoomie uses JTAG to set the counter value to be the
number of cycles to step over. The design is paused again
when the number reaches 0.

Design Readback. Instead of scanning out all the SLRs
naïvely, Zoomie analyzes the MUT to determine whether
it spreads over multiple SLRs. When the MUT is contained
within a single SLR, Zoomie would simply switch control to
that SLR utilizing the process described above to scan out the
relevant logic region. When the MUT is split across multiple
SLRs, Zoomie will scan each SLR only once. For each SLR, it
only scans the regions that contain the MUT, as indicated
by Vivado.

Combining Readback with Partial Reconfiguration.
During partial reconfiguration, the FPGA uses the mask reg-
ister to set restrict GSR to the dynamic region. However, it



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Wei et al.

does not restore the mask register by default. In order to com-
plete the readback function correctly, Zoomie always tries
to clear the mask bit prior to issuing readback commands.

Resuming from Snapshot Data. To resume from a snap-
shot, Zoomie first partially programs the FPGA with the
snapshot data while leaving untouched regions intact. This
is equivalent to only writing to some of the tiles with new
data, but not all tiles. After that, Zoomie ungates the clock
to unpause the design. However, before the MUT resumes
execution, the pause buffers first try to complete all outstand-
ing transactions during pausing; the design will then work
normally.

5 Evaluation
We evaluate our VTI algorithm for incremental compilation
detailed in Section 3.5, our optimized state readback imple-
mentation, and our Assertion Synthesis compiler. We also
present two case studies exploring the debugging speedups
enabled by Zoomie.

5.1 Evaluation Environment
We conducted all of our compilations on a computer with
an Intel Xeon Gold 6354 CPU and 512GB of main memory
running Ubuntu 20.04 LTS. A separate computer with an Intel
i9-10850K CPU running Debian Linux with kernel version
5.15.0 and 64 GB of memory hosts the FPGA, a Xilinx Alveo
U200 FPGA card. We used Xilinx Vivado 2022.2.

5.2 VTI Incremental Compilation for a Manycore
RISC-V SoC

Our VTI algorithm is designed to minimize the time it takes
between updating the RTL source code of a design and run-
ning the updated design on an FPGA at the cost of some
area inefficiency. To properly evaluate the magnitude of
this speedup, we chose an open-source manycore RISC-V
SoC [31] made of award-winning SERV cores [32] and con-
figured the SoC to include a total of 5400 RISC-V cores.

We first look at the area usage. 5400 cores use most of our
Alveo U200’s resources. Table 2 shows the exact resource
usage. This example demonstrates that VTI works even for
designs that fill up almost the whole FPGA, despite the fact
that VTI relies on reserving extra physical resources for
design partitions to allow for fast incremental compilation.

Table 2. Resource usage of an SoC with 5400 RISC-V
cores [31] on an Alveo U200 FPGA card.

Utilization Percentage

LUT 1103572 95.32
LUTRAM 54128 8.96

FF 12894858 53.42
BRAM 2120 98.19

0

1

2

3

4

5

initial #1 #2 #3 #4 #5

Ho
ur

s

Compilation Runs

Vivado Incremental Compilation Zoomie

Figure 7.Comparison in Compilation Speed between Vivado
Incremental and Zoomie

We chose one of the 5400 RISC-V cores in our SoC as
our MUT. We then ran synthesis and place-and-route (from
here on referred to as compile) for the complete design, once
with the default Xilinx Vivado incremental flow and once
with our VTI algorithm. The results of this are shown in
Figure 7. We observe that although VTI requires additional
steps when compiling the design from scratch, this overhead
is negligible.

To quantify how long the process of modification to run-
time debugging takes, we introduced minor changes to our
RISC-V core to expose signals for debugging and measured
the time it took to recompile the design. For the Vivado ver-
sion, we also added ILA probes, which are not needed when
using the Debug Controller provided by Zoomie.

Compared to the initial run, incremental compilation with
VTI consistently provides around 18× speedup, reducing the
time it takes by around 95%. This is because our approach
enables Vivado to only recompile a small portion of the
design separate from the entire SoC. At the same time, we
reuse the results from the initial compilation run for all other
parts of the design.

Vivado’s incremental mode, on the other hand, shows little
gain. While Zoomie enables the user to declare in advance
which module they want to recompile later, Vivado has no
way to utilize this information. We thus hypothesize that
when Vivado is unable restrict the changes to a single FPGA
tile, it will try to place a much larger part of the design in
a much larger area, thus resulting in a larger region of re-
compilation. Vivado’s incremental mode also often struggles
to provide speedups for larger designs with tighter timing.
This hypothesis is also supported by SMatch [44], which
demonstrates that Vivado can perform placement and rout-
ing very quickly if changes are restricted to a single tile.

Resource Usage Tradeoffs. The design successfully met
timing closure at the design’s original, default frequency of
50MHz, with Zoomie’s additions included, thus there was
no timing impact. We then tried to increase the design’s



Zoomie: A Software-like Debugging Tool for FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0
10
20
30
40
50
60
70

#1 #2 #3 #4 #5 #6 #7 #8

N
um

be
r o

f e
le

m
en

ts

SystemVerilog Assertion Synthesis Resource Usage

Flip Flops LUTs

Figure 8. FPGA Resource Usage for Synthesizing SystemVer-
ilog Assertions

frequency to 100MHz. This version failed to meet timing
through Vivado’s compilation. However, through further
inspection, we found that none of the top 10 timing paths
were in Zoomie-introduced code. With reference to the over-
provisioning coefficient introduced in section 3.5, we used
the default area overhead of 30%. However, the design also
successfully reached timing closure at both 20% and 15%
overheads.

5.3 SLR-Aware Readback Speed Comparison
In this section, we evaluate the speedup of our SLR-aware
state readback mechanism detailed in Section 4.7. We use the
same 5400 RISC-V core SoC design discussed in the previous
section and measure the time it takes to retrieve the state
from each of the three SLRs on our Alveo U200 FPGA card
with and without our optimization. We repeat each mea-
surement five times and show the average time in Table 3.
Our optimization provides an average speedup of around
80×, which enables inspecting the design state at interactive
speeds. The fact that reading from SLR 1, which controls
the other two SLRs on our FPGA, takes slightly less time
also confirms our model of how the chiplets are connected
introduced in Section 4.7.

5.4 Assertion Synthesis Area Overhead
Our Assertion Synthesis compiler enables designers to reuse
their SVAs for on-FPGA debugging. We picked Ariane [61],
an open-source, industrial-strength 6-stage RISC-VCPUwith
extensive verification support, to evaluate which assertions

Table 3. Comparison in Readback Time between Unopti-
mized Version and Zoomie measured in seconds.

SLR 0 SLR 1 SLR 2

Zoomie 0.397s 0.384s 0.392s
Unoptimized Zoomie 33.594s 33.560s 33.593s

we can successfully compile into synthesizable circuits and
the resource utilization of these circuits.

We randomly select eight SVAs across different hardware
modules found in Ariane. Zoomie successfully synthesized
seven of the eight assertions we picked. We cannot synthe-
size assertion #3 because it contains SystemVerilog operator
$isunknown, which only makes sense in a four-state soft-
ware simulation since it checks for the presence of an X
value, which is unsynthesizable for FPGA.

Figure 8 shows the resource usage for the seven assertions
we synthesized. In total, all assertions combined utilize 40
flip-flops and 88 LUTS – a negligible amount compared to
the 5k flip-flops and 42k LUTS taken up by a single Ariane
core. We thus find that Zoomie can convert most common
SystemVerilog Assertions into hardware monitors with very
little overhead.

5.5 Case Study #1: Debugging Heterogenous RISC-V
SoC with Multi-million Gates

In our first case study, we demonstrate Zoomie debugging a
multi-million gate heterogeneous Cohort RISC-V SoC[55].
We first recount how we used traditional debugging with
ILAs and the FPGA vendor tools to fix a natural bug they en-
countered during development.We then discuss how Zoomie
would have dramatically sped up this process had it been
available at the time this bug was discovered.

During FPGA prototyping, we found that one of our accel-
erators would hang in the middle of execution. In particular,
for certain inputs, it could only return part of the result be-
fore hanging indefinitely. We thus went about debugging
this issue using only traditional FPGA debugging tools as
follows:

1. Recompile the design with two ILAs, one for the
datapath of the accelerator and one for the load-store
unit of the accelerator.

2. Observe that in the design, the datapath is comput-
ing the correct result, but the load store unit stops
providing inputs to the datapath.

3. Recompile the design with two ILAs, one for the load-
store unit and one for the main system bus to localize
the position of the bug between the load-store unit and
the system bus.

4. Observe that in the design, the load store unit stops
issuing requests to the system bus while the system
bus successfully responds to all requests made by the
load store unit.

5. Recompile the design with two ILAs, one to the mem-
ory management unit, and one to the load store queues
to localize the position of the bug between memory man-
agement unit and load store unit.

6. Observe that the memory management unit stops re-
sponding to requests made by the load store unit while



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Wei et al.

the load store unit successfully issues requests to the
memory management unit.

7. Recompile the design with a big ILA that probes all
major control functions of the memory management
unit to debug the issue within the memory man-
agement unit.

8. Observe that the ready-valid interface was not prop-
erly implemented in the memory management unit,
thus finding the bug.

9. Fix the bug, and recompile the design.
10. The design now works as expected!

We see that the problem here is the fact that ILAs can only
observe aminimal subset of signals and costly re-compilation
is necessary every time a new signal is selected for inspection.
Zoomie, on the other hand, allows the user to inspect the
values of all signals in the design once it is paused. This
enabled us to find the same bug using Zoomie in less than
20 minutes, while we originally spent more than 2 hours
to debug it with traditional FPGA prototyping tools.

5.6 Case Study #2: Debugging Software and
Hardware Co-Design Issues

We used Zoomie to debug an issue with the Ariane RISC-V
core [61] introduced in Section 5.4. In this case, the core was
hanging, but it was unclear whether this was caused by the
software running on it or an RTL bug. RISC-V has a flexible
mechanism that allows multiple nested exceptions to occur.
However, more deeply nested (such as 5-level nested) excep-
tions are difficult to distinguish from single-level or two-level
exceptions. This can confuse users if they encounter bugs
around exception handlers, because the CPU can show errors
unrelated to the original issue.

In this example, we demonstrate how we use Zoomie to
mitigate this issue and successfully distinguish software and
hardware errors. On the hardware side, we use Zoomie to
insert a breakpoint on condition mcause[63] == 0 && MIE
== 0 && MPIE == 0. When this particular condition occurs,
the core will have undergone two levels of exceptions and
will respond to another exception. On the software side, we
intentionally set the base address for the exception handler
to an invalid address range. This will cause the CPU core to
loop indefinitely without any meaningful error information.

During debugging, we can observe immediately that the
flip-flop carrying the current PC value is equal to mepc, with
the exception flag set to high. This indicates that we are in
an infinite loop where the CPU keeps having exceptions on
the current address. Combined with the fact that we are in
the nested exception, we can conclude that this is indeed
legal behavior in hardware due to software misconfiguration.
This example demonstrates how Zoomie enables users to
distinguish between hardware and software errors efficiently
without recompiling the design to insert ILAs.

5.7 Case Study #3: Debugging With a High-Speed
Network Interface

We also demonstrate Zoomie’s ability to aid in debugging
high-speed network processing by integratingwith a 100Gbps
FPGA-based hardware network stack called Beehive [36]. We
successfully integrated Zoomie into Beehive without intro-
ducing timing violations with respect to the design’s 250MHz
clock. As such, we are able to insert breakpoints into AXI
transactions and gain full visibility of the entire stack.

Networking bugs are tricky because they often manifest
some time after the error as opposed to right when the error
occurs, and the erroneous behavior can surface in regions
of code that are not the actual root cause. There are two
traditional approaches to debugging problems like this on
FPGAs, but they are both ill-suited to network debugging:
ILA and record and replay of packets. Xilinx’s ILA is hard to
use because it requires recompilation every time we want
to inspect new signals, making iteration times long, and in
practice, having a large number of signals with probes will
require running the design at lower frequencies. In order to
use record and replay for certain networking bugs, we need
to capture packet traces with accurate timing information.
When replaying in software simulation, this can mean that
we have to simulate packets arriving over several seconds in
real-time. Simulating this length of time takes on the scale
of hours versus the seconds of FPGA prototype runtime.
Zoomie’s ability to allow in-situ readback of a large number
of signals without hurting timing fills a unique niche that is
especially friendly to this use case.

6 Limitations
Zoomie has the following limitations, some of which are
fundamental to FPGA architecture.

6.1 Precise Stepping over Multiple Asynchronous
Clock Domains

Precise stepping over multiple asynchronous clock domains
is only possible under certain conditions. It requires that
each clock domain’s clock gating signal does not violate
hold/setup timing in the other clock domain. It is generally
only possible when clocks are phase-aligned, and frequencies
are multiples of each other.

6.2 Precise Stepping with High-Speed Interfaces
Zoomie does not support cycle exact stepping at high-speed
interfaces, e.g., with Ethernet PHY interfaces. Fundamentally,
this is because the high-speed interface (GTX/GTY) signals
provided by Xilinx do not support clock gating. However,
users can extend their physical layer protocol implemen-
tations to achieve precise stepping, such as using the err
signal in XGMII (the protocol used for Ethernet MAC-PHY
communication) to achieve cycle exact stepping at the high-
speed interfaces. As a specific end-to-end example, our use



Zoomie: A Software-like Debugging Tool for FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 4. SystemVerilog Assertion Support in Zoomie

Feature Example Support

Immediate assert (A == B); full
System Functions $past(signal, 2) full
Clocking @(posedge clk) single clock
Implication a |->b full
Fixed Delay a ##2 b full
Delay Range a ##[1:2] b finite
Repetition (a ## b)[*2] only consecutive
Sequence Operator a and b finite a and b
Local Variable unsupported
Asynchronous Reset unsupported
First Match unsupported

of Zoomie with a hardware network protocol implementa-
tion is beyond the high-speed interface but still at 250 MHz,
though there is a queue that runs in the same clock domain
as the MAC-PHY. This queue is used to drop full Ethernet
frames if the consuming hardware is not ready to process
them, which is necessary for the correct function of the de-
sign regardless of Zoomie. Zoomie can debug any portion
of the design processing traffic after this queue. Pausing or
stepping manually here will give you debugging with correct
performance relative to the pausing or stepping frequency,
but not truly transparent debugging. Note that debugging
networked software socket applications with GDB runs into
the same challenges; if an application is paused under GDB,
the network stack may drop packets, and the performance or
code paths exercised under these conditions may be different
than when not pausing.

6.3 Limitations on SystemVerilog Assertion
Synthesis

We do not support the full grammar of SVAs for synthesis.
However, we do support most of the common assertions that
are prevalent in open-source projects such as CVA6 [61]. Ta-
ble 4 lists the common types of operators that Zoomie sup-
ports.

7 Related Work
7.1 FPGA Prototyping and FPGA Accelerated

Simulation
FPGA accelerated simulation has recently become popular,
with Ramp [33, 50, 51, 54] and Firesim [27] as examples.
Rather thanmapping logic elements directly into correspond-
ing FPGA primitives, they instead map the logic elements
into a timing accurate model and map the model onto an
FPGA. This enables decoupling of the design’s timing from
the FPGA’s [38] and thus cycle accurate performance mod-
elling at high speed. However, these benefits come with a
lower simulation speed, as simulating one cycle of the design
requires multiple cycles of the FPGA. In addition, the FPGA

must communicate with the host machine, which controls
the simulation. This overhead is especially high for debug-
ging, as the user needs to frequently pause the simulation to
inspect the design’s state.

7.2 Readback-based Debugging
Readback-based debugging is popular due to its minimal
overhead and wide availability across vendors. With its abil-
ity to read out almost the entire FPGA configuration, it is also
widely used in safety-critical applications, fault-injection,
and detection. Prior research [9, 11, 29, 35, 48] suffers from
the same problem: inability to debug large designs. In these
works, several simplifying assumptions are made such as
a single clock, a synchronous design, a monolithic FPGA,
and/or the use of a single FPGA chiplet. These assumptions
are reasonable for small designs, but quickly break down
at scale. Notably, our evaluated designs are on the order of
100× larger and much more complex, with multiple clocks
domains spread across multiple dies. In addition, previous
work cannot mutate hardware state on the fly, which we
consider to be critical for productive debugging.

7.3 Incremental Compilation for FPGA
Incremental compilation is a technique that enables the user
to quickly recompile only the parts of the design that have
changed. LiveHD [43, 44, 53] uses a graph-based design rep-
resentation to quickly identify modifications and only resyn-
thesize the necessary parts. It also proposes the novel tech-
nique of utilizing the fixed resource structure of LUTs on
FPGAs to minimize the impact synthesis has on global re-
sults. We consider this to be complementary to our work, as
it only addresses the synthesis phase of compilation. From
their speedup breakdown, we could see LiveHD sped up the
synthesis phase greatly over the commercial tool (by up to
20×), but end-to-end bitstream generation time is roughly
the same, as over 80% of the time is still spent in place and
route. By contrast, by leveraging insights into the FPGA’s
internal workings and designer aid, we achieve a uniform
speedup across all phases of the compilation.

7.4 Just In Time Compilation for FPGAs
JIT based compilation is a technique that enables the user
to modify the design on the fly and observe the result of
the modification immediately. Like incremental compilation,
JIT compilation is widely used in software development,
but unlike incremental compilation, it is not widely used
in FPGA development. Although this technique has been
well demonstrated [16, 47], it has not been widely adopted
in mainstream FPGA development as yet. These works de-
couple the logical clock for the design from the physical
clock of the FPGA. Although some performance penalty is
incurred, it allows the user to quickly iterate and supports
some of the non-synthesizable features of Verilog, which
are critical for debugging and not supported by most FPGA



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Wei et al.

accelerated simulation tools. Both of these works suffer from
the fact efficient JIT compilation requires regular (at a user-
configurable frequency) communication between the design
on the FPGA and the host machine. Although this could be
partly alleviated by using a high-speed interface such as PCIe
and optimizing the communication algorithm, it still incurs
an overhead compared to Zoomie.

7.5 Synthesizing SystemVerilog Assertions
In academia [8, 15, 18, 23, 45], the synthesis of Linear Tem-
poral Logic (LTL) into Finite State Machines (FSM) is well-
explored, yet there is an absence of readily available com-
pilers that integrate with SVAs. Moreover, SVA synthesis
demands consideration of specific semantics, including clock
and disable signals, distinguishing it from conventional LTL
synthesis.

7.6 Comparison to State of the Art Incremental
Compilation Techniques

We classify incremental compilation techniques for FPGAs
into three broad categories and compare Zoomie with exist-
ing works in each category.

Accelerator-Specific Techniques. Works like PLD and
HiPR [58, 59] partition an FPGA into coarse-grained regions
called pages which communicate through a common inter-
connect. The design is then mapped into smaller partitions
that could fit within a page. During the mapping, the cycle-
exact timing relationship between different pages is lost.
Instead, this decomposition leverages latency-insensitive in-
terfaces. This is best suited for accelerator designs where
the system is made up of identical smaller modules that are
replicated. In addition, the design needs to be mapped from
a higher level specification, where transformations could
easily decompose and recompose modules into equivalent
yet different representations. By contrast, RTL represents
designs at a much lower level. Gathering designer intent
from RTL-based designs is much more challenging, making
these transformations prohibitive. These techniques cannot
be used for incrementally compiling general hardware mod-
ules, which our approach aims to serve. This is because they
require injecting delays between latency-insensitive inter-
faces to work. However, in generic RTL designs, different
modules could have latency-sensitive dependencies which
delays would break. Zoomie can handle interfaces beyond
latency-insensitive ones, with the guidance of the designer
who is familiar with the particular interface protocol.

Techniques for combinatorial logic only. SMatch [43,
44, 53] achieves incremental compilation by checking if
changes in the design are contained within the smallest
unit (slice) on an FPGA. It then tries to directly manipu-
late the wiring of the LUTs instead of performing place and
route to speed up the recompilation process. Its fast speed
comes from directly manipulating the FPGA backend, but

only small, local, combinatorial changes are allowed. Logic
mapped across slices could not be handled, as well as changes
larger than a slice (of 4 LUTs). Zoomie supports arbitrary
(non-combinatorial/local) logic changes within the dynamic
region and increasing/decreasing resource usage. Where
SMatch is applicable, it would be faster than Zoomie as it
avoids place and route altogether. This technique could be
integrated into Zoomie for even faster compilation in the
cases where changes are small enough to work.

Virtually-timed designs on FPGA. For works like Cas-
cade and Manticore [24, 47], the DUT is not mapped directly
onto an FPGA. Instead, the simulated behavior of the DUT
is mapped onto a hardware engine running on the FPGA,
and the simulation happens on top of this layer. This ap-
proach requires multiple cycles (though potentially as few
as 2 for Cascade) to simulate a single cycle of the DUT. As
a result, the DUT generally cannot directly use the high
speed interfaces of the FPGA, and the simulated design has
a lower effective frequency. On the other hand, although
our approach introduces a small overhead in resource usage,
users can still exploit native FPGA features like high-speed
interfaces without lowering simulation speed.

7.7 Comparison to Debug Governor and DESSERT
Debug Governor [39] proposed a mechanism of intercepting
latency-insensitive interfaces to pause, log, and inject data
into these interfaces. First and foremost, Debug Governor
only pauses the latency-insensitive interface without paus-
ing the MUT, which would not preserve the precise state
of design like Zoomie. While it shares some functionality
with our Pause Buffer in Section 3.1, it cannot provide visi-
bility outside the high-level protocol interface. By contrast,
Zoomie provides full visibility of the DUT by default. Zoomie
could also manipulate any point in the MUT instead of be-
ing limited to modules’ protocol interfaces. Debug Governor
still suffers from the need for recompilation when trying to
observe new signals and a lack of software-debugger-like
functionalities.

DESSERT [30] proposes leveraging partial state snapshots
on FPGA to recreate CPU microarchitectural state in simula-
tion. Zoomie imposes fewer restrictions than DESSERT and
makes fewer assumptions about the design than DESSERT.
For starters, DESSERT is CPU microarchitecture specific. It
relies on scanning a selected subset of signals at runtime
through a custom scan chain and replaying those signal val-
ues in an RTL simulation environment with a hand-written
Verilog model for playing back the design. Compared to
Zoomie, it requires much more user intervention. Zoomie
provides a scalable alternative approach without imposing
the overhead of a custom scan chain andwouldmake it easier
and more efficient to implement a DESSERT-like technique.
For assertion synthesis, DESSERT only supports synthesizing
combinatorial assertions, which means it can only reason



Zoomie: A Software-like Debugging Tool for FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

about circuit behavior within a single cycle. By contrast,
Zoomie supports a more generic selection of concurrent
assertions that can reason over multiple cycles and overlap-
ping signals. These features are required for most assertions
used in industry. DESSERT only supports Chisel-based de-
signs (which accounts for a minor fraction of designs), while
Zoomie is HDL agnostic. In terms of overhead, DESSERT
introduces up to 85% logic overhead to perform partial value
scan-out, whereas Zoomie requires very low logic overhead
for scanning out signals from FPGA. Lastly, Zoomie could
achieve the printing of arbitrary signals at run time by single
stepping without recompiling the design, while adding new
prints in DESSERT requires recompiling the whole design.
These fundamental limitations make debugging in DESSERT
much more difficult and time-consuming.

8 Conclusion
In this paper, we present Zoomie, a software-like debugging
tool for FPGAs. We also provide an in-depth understand-
ing of Xilinx multi-chiplet FPGAs, and show how we could
leverage this understanding to provide a solution that has
high visibility, low overhead, and scales to huge designs.
We evaluate our approach on multiple designs with sizes
more than 100× greater than prior evaluations and detail
our comparison. With Zoomie, users can now debug their
designs with a much higher productivity and debug much
larger designs than before.

9 Acknowledgements
We thank all the reviewers and our shepherd, Eric Schkufza,
for their very valuable feedback. This work was partially
funded by SLICE Lab industrial sponsors and affiliates Ama-
zon, AMD, Apple, Google, Intel, and Qualcomm. This work
was also supported by NSF grant CNS-210458, NSF grant
CCF-1900968, VMware, Cisco Systems, NSF GRFP.The views
and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any
agency thereof. We also thank Stephen Neuendorffer, Kehui
Liu, Shangyin Tan, Chris Batten and Sagar Karandikar for
their feedback and comments.

References
[1] Intel Agilex® 9 FPGA Direct RF-Series Whitepaper. https://www.in-

tel.com/content/www/us/en/products/docs/programmable/direct-rf-
series-fpga-white-paper.html.

[2] Intel® Stratix® 10 FPGAs Overview - High Performance Intel®
FPGA. https://www.intel.com/content/www/us/en/products/de-
tails/fpga/stratix/10.html.

[3] ‘My FPGA debug and verification flow should be improved…’ | Exostiv
Labs, September 2015.

[4] IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012) IEEE Standard
for SystemVerilog—Unified Hardware Design, Specification, and Veri-
fication Language. page 1315, 2018.

[5] IEEE Standard for Universal Verification Methodology Language Ref-
erence Manual. IEEE Std 1800.2-2020 (Revision of IEEE Std 1800.2-2017),

pages 1–458, September 2020.
[6] UltraScale Architecture Configuration User Guide, 2023.
[7] Gautam Altekar and Ion Stoica. ODR: Output-deterministic replay for

multicore debugging. In Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles, SOSP ’09, pages 193–206, New
York, NY, USA, October 2009. Association for Computing Machinery.

[8] Omar Amin, Youssef Ramzy, Omar Ibrahem, Ahmed Fouad, Khaled
Mohamed, and Mohamed Abdelsalam. System Verilog Assertions
Synthesis Based Compiler. In 2016 17th International Workshop on
Microprocessor and SOC Test and Verification (MTV), pages 65–70, De-
cember 2016.

[9] Hari Angepat, Gage Eads, Christopher Craik, and Derek Chiou. NIFD:
Non-intrusive FPGA Debugger – Debugging FPGA ’Threads’ for Rapid
HW/SW Systems Prototyping. In 2010 International Conference on
Field Programmable Logic and Applications, pages 356–359, August
2010.

[10] Khalil Arshak, Essa Jafer, and Christian Ibala. Testing FPGA based
digital system using XILINX ChipScope logic analyzer. In 2006 29th
International Spring Seminar on Electronics Technology, pages 355–360,
May 2006.

[11] Sameh Attia and Vaughn Betz. StateMover: Combining Simulation and
Hardware Execution for Efficient FPGA Debugging. In Proceedings of
the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’20, pages 175–185, New York, NY, USA, February
2020. Association for Computing Machinery.

[12] Sameh Attia and Vaughn Betz. StateLink: FPGA System Debugging
via Flexible Simulation/Hardware Integration. In 2021 International
Conference on Field-Programmable Technology (ICFPT), pages 1–10,
December 2021.

[13] Sameh Attia and Vaughn Betz. Stop and Look: A Novel Checkpointing
and Debugging Flow for FPGAs. IEEE Transactions on Computers,
71(10):2513–2526, October 2022.

[14] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory
Chirkov, Ang Li, Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu, Florian
Zaruba, Kunal Gulati, Luca Benini, and David Wentzlaff. BYOC: A
”Bring Your Own Core” Framework for Heterogeneous-ISA Research.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 699–714, Lausanne Switzerland, March 2020. ACM.

[15] Suguman Bansal, Giuseppe De Giacomo, Antonio Di Stasio, Yong
Li, Moshe Y. Vardi, and Shufang Zhu. Compositional Safety LTL
Synthesis. In Verified Software. Theories, Tools and Experiments.: 14th
International Conference, VSTTE 2022, Trento, Italy, October 17–18, 2022,
Revised Selected Papers, pages 1–19, Berlin, Heidelberg, February 2023.
Springer-Verlag.

[16] Etienne Bergeron, Marc Feeley, and Jean Pierre David. Hardware JIT
Compilation for Off-the-Shelf Dynamically Reconfigurable FPGAs.
In Laurie Hendren, editor, Compiler Construction, Lecture Notes in
Computer Science, pages 178–192, Berlin, Heidelberg, 2008. Springer.

[17] Brian Burg, Richard Bailey, Amy J. Ko, and Michael D. Ernst. Inter-
active record/replay for web application debugging. In Proceedings
of the 26th Annual ACM Symposium on User Interface Software and
Technology, UIST ’13, pages 473–484, New York, NY, USA, October
2013. Association for Computing Machinery.

[18] Alberto Camacho, Jorge Baier, Christian Muise, and Sheila McIlraith.
Finite LTL Synthesis as Planning. Proceedings of the International
Conference on Automated Planning and Scheduling, 28:29–38, June
2018.

[19] Kevin Camera and Robert W. Brodersen. An integrated debugging
environment for FPGA computing platforms. In Proceedings of the
16th International ACM/SIGDA Symposium on Field Programmable Gate
Arrays, FPGA ’08, page 260, New York, NY, USA, February 2008. Asso-
ciation for Computing Machinery.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Wei et al.

[20] L.P. Carloni, K.L. McMillan, and A.L. Sangiovanni-Vincentelli. Theory
of latency-insensitive design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20(9):1059–1076, Sept./2001.

[21] Raghunandan Chaware, Ganesh Hariharan, Jeff Lin, Inderjit Singh,
Glenn O’Rourke, Kenny Ng, S. Y. Pai, Chien-Chen. Li, Zill Huang,
and S. K. Cheng. Assembly challenges in developing 3D IC package
with ultra high yield and high reliability. In 2015 IEEE 65th Electronic
Components and Technology Conference (ECTC), pages 1447–1451, San
Diego, CA, May 2015. IEEE.

[22] Michael Christensen, Timothy Sherwood, Jonathan Balkind, and Ben
Hardekopf. Wire sorts: A language abstraction for safe hardware com-
position. In Proceedings of the 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, PLDI 2021,
pages 175–189, New York, NY, USA, 2021. Association for Computing
Machinery.

[23] S. Das, R. Mohanty, P. Dasgupta, and P.P. Chakrabarti. Synthesis of
System Verilog Assertions. In Proceedings of the Design Automation
&amp;Amp; Test in Europe Conference, pages 1–6, Munich, Germany,
2006. IEEE.

[24] Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Moham-
mad Sepehr Pourghannad, Ritik Raj, and James R. Larus. Manticore:
Hardware-Accelerated RTL Simulation with Static Bulk-Synchronous
Parallelism, May 2023.

[25] Jakob Engblom. A review of reverse debugging. In Proceedings of the
2012 System, Software, SoC and Silicon Debug Conference, pages 1–6,
September 2012.

[26] Harry Foster. 2022 Wilson Research Group IC/ASIC functional verifi-
cation trends. 2022.

[27] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic,
Randy Katz, Jonathan Bachrach, and Krste Asanovic. FireSim: FPGA-
Accelerated Cycle-Exact Scale-Out System Simulation in the Public
Cloud. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 29–42, Los Angeles, CA, June
2018. IEEE.

[28] Sahand Kashani, Mahyar Emami, and James R. Larus. Bitfiltrator: A
general approach for reverse-engineering Xilinx bitstream formats. In
2022 32nd International Conference on Field-Programmable Logic and
Applications (FPL), pages 01–08, August 2022.

[29] Ashfaquzzaman Khan, Richard Neil Pittman, and Alessandro Forin.
gNOSIS: A Board-Level Debugging and Verification Tool. In 2010 In-
ternational Conference on Reconfigurable Computing and FPGAs, pages
43–48, December 2010.

[30] Donggyu Kim, Christopher Celio, Sagar Karandikar, David Biancolin,
Jonathan Bachrach, and Krste Asanović. DESSERT: Debugging RTL
Effectively with State Snapshotting for Error Replays across Trillions
of Cycles. In 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), pages 76–764, August 2018.

[31] Olof Kindgren. CoreScore, June 2023.
[32] Olof Kindgren. Five years of SERVing. https://riscv.org/blog/2023/12/

five-years-of-serving/, 2023.
[33] Alex Krasnov, Andrew Schultz, John Wawrzynek, Greg Gibeling, and

Pierre-Yves Droz. RAMP Blue: A Message-Passing Manycore System
in FPGAs. In 2007 International Conference on Field Programmable
Logic and Applications, pages 54–61, Amsterdam, Netherlands, August
2007. IEEE.

[34] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J. Rossbach, and
Eric Schkufza. Compiler-driven FPGA virtualization with SYNERGY.
In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’21, pages 818–831, New York, NY, USA, April 2021. Association for
Computing Machinery.

[35] Changgong Li, Alexander Schwarz, and Christian Hochberger. A
readback based general debugging framework for soft-core processors.
In 2016 IEEE 34th International Conference on Computer Design (ICCD),
pages 568–575, October 2016.

[36] Katie Lim, Matthew Giordano, Theano Stavrinos, Baris Kasikci, and
Tom Anderson. Beehive: A flexible network stack for direct-attached
accelerators, 2024.

[37] Guillem López-Paradís, Brian Li, Adriá Armejach, StefanWallentowitz,
Miquel Moretó, and Jonathan Balkind. Fast behavioural RTL simula-
tion of 10B transistor SoC designs with metro-mpi. In 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1–6, 2023.

[38] Albert Magyar, David Biancolin, John Koenig, Sanjit Seshia, Jonathan
Bachrach, and Krste Asanovic. Golden Gate: Bridging The Resource-
Efficiency Gap Between ASICs and FPGA Prototypes. In 2019
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), pages 1–8, Westminster, CO, USA, November 2019. IEEE.

[39] Marco Antonio Merlini, Isamu Poy, and Paul Chow. Interactive De-
bugging at IP Block Interfaces in FPGAs. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages
138–144, Virtual Event USA, February 2021. ACM.

[40] Pablo Montesinos, Luis Ceze, and Josep Torrellas. DeLorean: Record-
ing and Deterministically Replaying Shared-Memory Multiprocessor
Execution Ef?ciently. ACM SIGARCH Computer Architecture News,
36(3):289–300, June 2008.

[41] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll,
and Nimrod Partush. Engineering Record And Replay For Deployabil-
ity: Extended Technical Report, May 2017.

[42] Marcelo Orenes-Vera, Aninda Manocha, Jonathan Balkind, Fei Gao,
Juan L. Aragón, David Wentzlaff, and Margaret Martonosi. Tiny but
mighty: Designing and realizing scalable latency tolerance for many-
core SoCs. In Proceedings of the 49th Annual International Symposium
on Computer Architecture, ISCA ’22, pages 817–830, New York, NY,
USA, June 2022. Association for Computing Machinery.

[43] Rafael Trapani Possignolo and Jose Renau. LiveSynth: Towards an
interactive synthesis flow. In Proceedings of the 54th Annual Design
Automation Conference 2017, pages 1–6, 2017.

[44] Rafael Trapani Possignolo and Jose Renau. SMatch: Structural Match-
ing for Fast Resynthesis in FPGAs. In Proceedings of the 56th Annual
Design Automation Conference 2019, DAC ’19, pages 1–6, New York,
NY, USA, June 2019. Association for Computing Machinery.

[45] D.L. Rosenband and Arvind. Hardware synthesis from guarded atomic
actions with performance specifications. In ICCAD-2005. IEEE/ACM In-
ternational Conference on Computer-Aided Design, 2005., pages 784–791,
San Jose, CA, 2005. IEEE.

[46] Kirk Saban. Xilinx stacked silicon interconnect technology delivers
breakthrough FPGA capacity, bandwidth, and power efficiency. Xilinx,
White Paper, 1(1):1–10, 2011.

[47] Eric Schkufza, Michael Wei, and Christopher J. Rossbach. Just-In-
Time Compilation for Verilog: A New Technique for Improving the
FPGA Programming Experience. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 271–286, Providence RI USA,
April 2019. ACM.

[48] Kan Shi, Shuoxiang Xu, Yuhan Diao, David Boland, and Yungang Bao.
ENCORE: Efficient Architecture Verification Framework with FPGA
Acceleration. In Proceedings of the 2023 ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, FPGA ’23, pages 209–219,
New York, NY, USA, February 2023. Association for Computing Ma-
chinery.

[49] Stuart Sutherland and Don Mills. Can My Synthesis Compiler Do
That? In DVCon 2014, San Jose, CA, USA, DVCon 2014.

https://riscv.org/blog/2023/12/five-years-of-serving/
https://riscv.org/blog/2023/12/five-years-of-serving/


Zoomie: A Software-like Debugging Tool for FPGAs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[50] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry
Cook, David Patterson, and Krste Asanovic´. RAMP gold: An FPGA-
based architecture simulator formultiprocessors. InDesign Automation
Conference, pages 463–468, June 2010.

[51] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste
Asanović, and David Patterson. A case for FAME: FPGA architec-
ture model execution. ACM SIGARCH Computer Architecture News,
38(3):290–301, June 2010.

[52] Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and
Luis Ceze. Reticle: A virtual machine for programming modern FPGAs.
In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2021, pages
756–771, New York, NY, USA, June 2021. Association for Computing
Machinery.

[53] Sheng-Hong Wang, Rafael Trapani Possignolo, Haven Blake Skinner,
and Jose Renau. LiveHD: A Productive Live Hardware Development
Flow. IEEE Micro, 40(4):67–75, July 2020.

[54] JohnWawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu, Christo-
foros Kozyrakis, James C. Hoe, Derek Chiou, and Krste Asanovic.
RAMP: Research Accelerator for Multiple Processors. IEEE Micro,
27(2):46–57, March 2007.

[55] Tianrui Wei, Nazerke Turtayeva, Marcelo Orenes-Vera, Omkar Lonkar,
and Jonathan Balkind. Cohort: Software-Oriented Acceleration for
Heterogeneous SoCs. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS 2023, pages 105–117, New York,
NY, USA, March 2023. Association for Computing Machinery.

[56] Claire Wolf and Johann Glaser. Yosys - A Free Verilog Synthesis Suite.
In 21st Austrian Workshop on Microelectronics, Linz, Austria, October
2013.

[57] Xin Wu. 3D-IC technologies and 3D FPGA. In 2015 International 3D
Systems Integration Conference (3DIC), pages KN1–1. IEEE, 2015.

[58] Yuanlong Xiao, Aditya Hota, Dongjoon Park, and André DeHon. HiPR:
High-level Partial Reconfiguration for Fast Incremental FPGA Compi-
lation. In 2022 32nd International Conference on Field-Programmable
Logic and Applications (FPL), pages 70–78, August 2022.

[59] Yuanlong Xiao, Eric Micallef, Andrew Butt, Matthew Hofmann, Marc
Alston, Matthew Goldsmith, Andrew Merczynski-Hait, and André De-
Hon. PLD: Fast FPGA compilation to make reconfigurable acceleration
compatible with modern incremental refinement software develop-
ment. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’22, pages 933–945, New York, NY, USA, February 2022.
Association for Computing Machinery.

[60] Florian Zaruba and Luca Benini. The Cost of Application-Class Process-
ing: Energy and Performance Analysis of a Linux-ready 1.7GHz 64bit
RISC-V Core in 22nm FDSOI Technology. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(11):2629–2640, November
2019.

[61] Florian Zaruba and Luca Benini. The Cost of Application-Class Process-
ing: Energy and Performance Analysis of a Linux-ready 1.7GHz 64bit
RISC-V Core in 22nm FDSOI Technology. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(11):2629–2640, November
2019.

[62] Gefei Zuo, Jiacheng Ma, Andrew Quinn, and Baris Kasikci. Vidi:
Record Replay for Reconfigurable Hardware. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages 806–820, Vancouver
BC Canada, March 2023. ACM.


	Abstract
	1 Introduction
	2 Background
	2.1 Challenges with FPGA prototyping
	2.2 Motivating Example

	3 Zoomie architecture
	3.1 Pausing the design with the Debug Controller
	3.2 State Extraction
	3.3 Manipulating Design State
	3.4 Pausing the Design with Internal Triggers
	3.5 Smart Compilation for Debugging with VTI

	4 Xilinx Features to Implement Zoomie
	4.1 Xilinx Configuration Flow
	4.2 Controlling Clock and Reset in FPGA
	4.3 Chiplet Connections between FPGAs
	4.4 Hidden Instructions to Select SLRs
	4.5 Hypothesis Validation
	4.6 Controlling FPGA Chiplets
	4.7 Composing Xilinx features into Zoomie features

	5 Evaluation
	5.1 Evaluation Environment
	5.2 VTI Incremental Compilation for a Manycore RISC-V SoC
	5.3 SLR-Aware Readback Speed Comparison
	5.4 Assertion Synthesis Area Overhead
	5.5 Case Study #1: Debugging Heterogenous RISC-V SoC with Multi-million Gates
	5.6 Case Study #2: Debugging Software and Hardware Co-Design Issues
	5.7 Case Study #3: Debugging With a High-Speed Network Interface

	6 Limitations
	6.1 Precise Stepping over Multiple Asynchronous Clock Domains
	6.2 Precise Stepping with High-Speed Interfaces
	6.3 Limitations on SystemVerilog Assertion Synthesis

	7 Related Work
	7.1 FPGA Prototyping and FPGA Accelerated Simulation
	7.2 Readback-based Debugging
	7.3 Incremental Compilation for FPGA
	7.4 Just In Time Compilation for FPGAs
	7.5 Synthesizing SystemVerilog Assertions
	7.6 Comparison to State of the Art Incremental Compilation Techniques
	7.7 Comparison to Debug Governor and DESSERT

	8 Conclusion
	9 Acknowledgements
	References

