
RTL-Repair: Fast Symbolic Repair of Hardware Design Code
Kevin Laeufer

laeufer@eecs.berkeley.edu
University of California, Berkeley

Berkeley, CA, USA

Brandon Fajardo∗
brfajardo@berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

Abhik Ahuja∗
ahujaabhik@berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

Vighnesh Iyer
vighnesh.iyer@eecs.berkeley.edu
University of California, Berkeley

Berkeley, CA, USA

Borivoje Nikolić
bora@eecs.berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

Koushik Sen
ksen@eecs.berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

ABSTRACT
We present RTL-Repair, a semantics-based repair tool for regis-
ter transfer level circuit descriptions. Compared to the previous
state-of-the-art tool, RTL-Repair generates more correct repairs
within seconds instead of minutes or even hours. We imagine that
RTL-Repair could thus be integrated into an IDE to give developers
repair suggestions promptly. Our new SMT-based one-step fault
localization and repair algorithm for digital hardware designs uses
optimization to generate minimal changes that a user can easily
understand. A novel adaptive windowing approach allows us to
avoid scalability issues by focusing the repair search on the parts
of the test that matter the most. RTL-Repair provides repairs that
pass their testbench for 9 out of 12 real bugs collected from open-
source hardware projects. Two repairs fully match the ground truth,
one partially, four more repairs change the correct expression but
in a way that overfits the testbench, and only three repairs differ
strongly from the ground truth.

CCS CONCEPTS
• Hardware → Semi-formal verification; Hardware description lan-
guages and compilation; • Software and its engineering→ Search-
based software engineering.
ACM Reference Format:
Kevin Laeufer, Brandon Fajardo, Abhik Ahuja, Vighnesh Iyer, Borivoje
Nikolić, and Koushik Sen. 2024. RTL-Repair: Fast Symbolic Repair of Hard-
ware Design Code. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3 (ASP-
LOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3620666.3651346

1 INTRODUCTION
Modern digital circuits are commonly designed at the register trans-
fer level (RTL). At this level of abstraction, a designer uses a hard-
ware description language (HDL) to specify how registers and
memories in the circuit are updated each cycle. Synthesis tools
∗Denotes equal contribution.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04
https://doi.org/10.1145/3620666.3651346

convert the RTL description into a low-level circuit, which can be
implemented in a VLSI physical design flow.

Most logic bugs in a hardware design manifest at the RTL level.
For testing, RTL descriptions can be executed by a wide range of
available simulators [20, 25, 41, 43, 47]. While some designers only
use manual inspection of the resulting waveforms to validate the
output [30], more rigorous testing setups use verification libraries
allowing self-checking tests [4, 18, 23, 28, 45]. Besides concrete
testing, formal techniques like bounded-model checking [11] can
reveal inputs to the design that cause assertion violations. Nomatter
whether checks are manual, automated, or symbolic, for each bug,
the designer is always presented with a failing trace of signal values
over time that leads to a violation.

The classic way of debugging this failing trace is for the designer
to look at a rendering of it and use their knowledge of the design
to try and find a way to fix it. Some recent academic work has also
looked into source-level debugging for hardware languages [50],
but traditional debugging tools from software, such as step-through
debugging, are not always as useful in the hardware context. While
software programmers are used to thinking of their programs as
executing strictly in program order, multi-threaded programs break
this abstraction, which makes them much more challenging to
reason about. In hardware, there are no sequential programs. Results
and state updates are all computed concurrently. HDLs reflect that
by modeling components as a composition of parallel processes
(in Verilog [2] and VHDL [3]) or by allowing signals to be used
before they are assigned (last-connect semantics in Chisel [8]).
RTL-Repair sidesteps this problem by directly suggesting relevant
changes to the RTL developer.

The software engineering community has long been working on
automated program repair [22, 27, 29, 34]. In the standard scenario,
we are provided with program source code and test cases, at least
one of which currently fails. The tool then tries to find one or
several changes to the source code, which makes all test cases pass.
Unfortunately, most automated program repair tools take several
hours to run and often provide unsatisfying repairs, which remove

Table 1: RTL-Repair vs State-of-the-Art Tool

RTL-Repair CirFix [6]

median max # median max
✔ Correct Repairs 16 0.70s 13.17s 10 2.53min 14.19h
✖Wrong Repairs 2 0.51s 0.68s 11 2.03h 9.50h
○ Cannot Repair 14 5.64s 59.81s 11 16.00h 16.00h

https://orcid.org/0000-0003-0942-7070
https://orcid.org/0009-0000-9196-0020
https://orcid.org/0009-0006-7670-9077
https://orcid.org/0000-0001-6934-6577
https://orcid.org/0000-0003-2324-1715
https://orcid.org/0000-0002-4539-9188
https://doi.org/10.1145/3620666.3651346
https://doi.org/10.1145/3620666.3651346

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Kevin Laeufer, Brandon Fajardo, Abhik Ahuja, Vighnesh Iyer, Borivoje Nikolić, and Koushik Sen

program functionality [39]. Recent work on a tool called CirFix
shows that automated program repair can be applied to hardware
descriptions as well [6]. However, CirFix can take several hours to
come up with a repair and often results in unsatisfactory repairs.

In this paper, we present RTL-Repair, which produces more
correct repairs than CirFix in a fraction of the time (Table 1). We
demonstrate how to combine the repair template idea from CirFix
with symbolic analysis-based repair and how to address scalability
issues associated with long-running testbenches. RTL-Repair is
available on github: https://github.com/ekiwi/rtl-repair. We also
provide an artifact with scripts to reproduce all our results. Our
paper makes the following contributions:

• We propose a new symbolic, template-based repair algorithm
• We introduce an adaptive windowing technique that allows
us to scale to long-running testbenches

• Wedefine a new output/state divergence delta (OSDD)metric
that helps reason about the hardness of bugs

• Weperform a thorough evaluation of RTL-Repair andCirFix,
including gate-level simulation as a new way to automati-
cally verify repairs of hardware

• We further evaluate RTL-Repair on real bugs mined from
open-source projects [31]

2 BACKGROUND
2.1 The SystemVerilog Language
Most digital hardware today is designed with hardware descrip-
tion languages (HDLs) like VHDL [3] or SystemVerilog [2]. Both
languages were initially conceived to program event-driven simu-
lations of hardware designs [19] and then later adapted to support
synthesis. Synthesis tools that automatically translate a chip sim-
ulation into a netlist to be fabricated are standard practice in the
industry nowadays.

Synthesizability. Not all simulation constructs have a mapping
to actual hardware, which leads to the definition of a synthesiz-
able subset of the language [1, 42]. The mix of simulation language
and automated translation can complicate hardware design: Cir-
cuits that seem to work well in simulation might fail to synthesize.
A much more severe problem is synthesis-simulation mismatch,
where a design is quietly accepted by the synthesis tool, but the
resulting hardware behaves differently from the high-level HDL de-
scription [35]. Standard approaches to detect simulation-synthesis
mismatch are combinational equivalence checking [26], which at-
tempts to prove equivalence between the high-level RTL and the
low-level netlist and gate-level simulations [19].

X-Propagation. In a Verilog program, most values are 4-state
bit-vectors: each bit can take on a value of 0, 1, Z, or X. The Z
value is used to model tri-state buses. The X value is used to model
unknown values. For example, these can originate from uninitial-
ized state variables, out-of-bounds reads, unconnected signals, or
explicit assignments of a signal to X [46]. Simulation with X values
could be thought of as abstract interpretation since an X can stand
for both 0 and 1. However, in Verilog, execution with X values
is neither sound nor complete, meaning that for some computa-
tions with X, the result is over-approximated, and for others, it
is under-approximated. Especially the over-approximation, also

known as X-optimism, can lead to a mismatch between the 4-state
simulation and the 2-state circuit generated by the synthesis tool.
X-propagation is thus a common source of synthesis-simulation
mismatch.

2.2 Bounded Model Checking.
While simulator-based dynamic verification executes a Verilog de-
sign with concrete input values, formal verification reasons about
all possible input values at once to prove or disprove a specification.
Bounded model checking (BMC) is a popular formal technique to
find bugs in hardware designs [11]: Starting from an arbitrary state,
it unrolls the system for : cycles and asks a formal engine based on
SAT [33] or SMT [10] if there exist any inputs, and starting state
which will make an assertion in the design fail. The result is either
the assurance that all assertions hold for up to : cycles or a trace
that shows how the assertion can fail. Bounded model checking
generally gets slower as : increases, often exponentially so.

3 REPAIR EXAMPLE
To illustrate key components of the RTL-Repair algorithm, we
present an example before diving into details in Section 4. We
are going to repair the Verilog description of a simple counter
circuit (Figure 1a). This is the same example circuit that was used
in the CirFix paper [6]. We first illustrate how the circuit can be
converted to perform BMC with an SMT-solver before showing
how RTL-Repair adapts BMC for its repair algorithm.

Transition System Encoding. Before we can formally analyze the
circuit, we need to convert the Verilog code into a format that is

module first_counter (
 input clock, input reset, input enable,
 output reg [3:0] count,
 output reg overflow
);
always@(posedge clock) begin
 if(reset == 1'b1) begin
 // count reset is missing:
 // count <= 4'b0;
 overflow <= 1'b0;
 end else if (enable == 1'b1) begin
 count <= count + 1;
 end
 if(count == 4'b1111) begin
 overflow <= 1'b1;
 end
end
endmodule

(a) Verilog source code.

overflow' =
 (ite (= count (_ bv15 4)) true
 (ite reset false overflow))
count' =
 (ite reset count
 (ite enable (bvadd count (_ bv1 32))
count))

(b) Next state expressions in SMTLib format.

Figure 1: A counter circuit with a missing reset value.

https://github.com/ekiwi/rtl-repair

RTL-Repair: Fast Symbolic Repair of Hardware Design Code ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A4B4C 4=01;4 2>D=C >E4A 5 ;>F

1 - - -

0 0 0 -

(a) I/O Trace Generated from a Testbench.

module first_counter (
 // [...] I/O from original circuit
 input φ0, input [3:0] α0,
 input φ1, input [3:0] α1);
always@(posedge clock) begin
 if(reset == 1'b1) begin
 overflow <= 1'b0;
 if(φ0) count <= α0;
 end else if (enable == 1'b1) begin
 count <= count + 1;
 end
 if(count == 4'b1111) begin
 overflow <= 1'b1;
 if(φ1) count <= α1;
 end
end
endmodule

(b) Simplified conditional overwrite template applied.

; random concrete initial state
(assert (= overflow@0 true))
(assert (= count@0 (_ bv8 4)))
; next state
(define-fun count@1 () (_ BitVec 4)
 (ite (and (= count@0 (_ bv15 4)) φ1) α1
 (ite (and reset@0 φ0) α0
 (ite (and (not reset@0) enable@0)
 (bvadd count@0 (_ bv1 4)) count@0))))
; I/O trace
(assert reset@0)
(assert (= count@1 (_ bv0 4)))
; limit number of changes to one
(assert (= #b01 (bvadd
 (ite phi1 #b01 #b00)
 (ite phi0 #b01 #b00))))

(c) Repair query.

q0 U0 q1 U1 change size:
∑#=2

8 q8

1 0 0 - 1
1 0 1 0 2

(d) Possible solutions.

Figure 2: Repairing the counter circuit from Figure 1

amenable to formal analysis. We use the open-source synthesis tool
yosys [48] to turn the event-driven simulation into a circuit-like
transition system representation that encodes the clock updates
for the count and overflow registers as SMTLib [9] bit-vector
expressions (Figure 1b).

I/O Trace. The bug we are looking to fix is revealed by a simple
test: Afterwe reset the circuit, we expect the count output to be zero.
However, currently, it is X since the count register is missing a reset
assignment. RTL-Repair accepts concrete tests in the form of I/O

traces – essentially tables with one row for every execution cycle
and one column for every input and expected output value. Figure 2a
shows the trace for our small example test. Besides manual entry,
an I/O trace can be recorded from a concrete testbench, similar
to how CirFix obtains expected outputs for its fitness function. It
could also be returned by a BMC tool that has discovered a bug in
the circuit. We designate inputs that could be set to any value with
- . For outputs, an - indicates that the value of the output at that
particular time step does not matter, i.e., it is not checked by the
testbench.

Repair Template. RTL-Repair analyses the Verilog source code
and enumerates all possible changes to the circuit that fit a certain
template. In our example, we consider assigning a constant to a
signal somewhere in code. For each assignment, we create two new
inputs: q8 and U8 . U8 represents a constant that can be freely chosen
by the repair synthesizer. q8 indicates whether the assignment
should be included. Figure 2b shows how we add two possible new
assignments to the circuit. Generally, we will add a lot more possible
assignments, however, we restrict ourselves to two in this example
in order to make the resulting synthesis query easy to understand.
For a more thorough description of the various repair templates,
please see Section 4.2. The instrumented Verilog AST is converted
into a transition system using yosys [48].

The Basic Repair Synthesizer. RTL-Repair unrolls the transition
system exactly the same way as we would for bounded model
checking. However, instead of asking the solver to choose the inputs,
we assert that the input and output values are equal to the ones
from the given I/O trace and ask the solver to provide an assignment
to our synthesis variables q8 and U8 such that the circuit correctly
follows the I/O trace. Such a repair query is shown in Figure 2c.
Figure 2d shows two solutions found by the solver. Both solutions
add an assignment to the reset block. The difference is that the
second solution also adds an assignment in the overflow code block.
The I/O trace never increments the counter all the way to 15, which
makes this new statement dead code in terms of the test we provided.
However, assigning count to 0 in the overflow block, as the solver
suggests, introduces a new bug in our circuit which is revealed if
we test the overflow behavior. In general, we find that the fewer
changes wemake, the more likely we will arrive at a valid repair. We
thus implement an algorithm that ensures a repair with a minimal
number of changes.

First, we use the solver to check whether a solution with any
number of changes exists at all. If that is the case, we then search
for a solution with a minimal number of changes by calculating∑#
8 q8 in the SMT query and successively increasing the number of

changes we want to see until the solver returns a satisfying assign-
ment. This constraint is demonstrated at the bottom of Figure 2c.
By restricting the number of changes to one, we obtain the minimal
solution with q0 = 1 and q1 = 0. While simple, the major downside
of the basic repair synthesis approach is that we always unroll the
system for all cycles in the I/O trace. This leads to scalability issues
with long testbenches, which can be solved by our new adaptive
windowing approach described in Section 4.4.

Repairing the Verilog Code. We use the repair synthesizer’s as-
signment to the synthesis variables to generate the repaired Verilog

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Kevin Laeufer, Brandon Fajardo, Abhik Ahuja, Vighnesh Iyer, Borivoje Nikolić, and Koushik Sen

code. We remove any assignment where q8 is false. This can be
thought of as plugging in the assignment from the synthesizer and
running a simple dead-code elimination. We inline the concrete
value for U8 for all remaining code, where q8 is true, and thus, the
assignment happens unconditionally. After making these changes
on the AST, we serialize it into a repaired Verilog file.

4 THE RTL-REPAIR REPAIR ALGORITHM
The RTL-Repair tool accepts a buggy Verilog module as well as
an I/O trace as input. It first runs a standard static analysis tool
to address some straightforward errors that would lead to non-
synthesizable code. Next RTL-Repair applies a series of repair tem-
plates, each of which is implemented as a compiler pass over the
Verilog AST which adds different ways for the repair synthesizer to
fix the circuits. Our repair synthesizer takes the transition system
(converted from Verilog with yosys) and the testbench in the form
of an I/O trace as input. It then tries to find a minimal change from
the space of changes described by the repair template that will
make the circuit pass the test. If such a minimal change is found, it
is applied to the Verilog AST, resulting in a repaired source code.
If the change is large (

∑#
8 q8 > 3), then we keep on trying out

templates to see if a smaller repair can be found with a different
template. If no change can make the I/O trace pass, RTL-Repair
will move on to the next repair template. Once all repair templates
have been tried with no success, the user is notified that no repair
could be found. The whole process is illustrated in Figure 3.

4.1 Preprocessing with Static Analysis
RTL-Repair’s symbolic repair algorithm requires the buggy de-
sign to be synthesizable [1, 42]. This is generally not a problem.
In industry, static analysis tools called linters are used to enforce
coding standards that guarantee that the circuit can be synthesized.
Modern hardware languages like Chisel allow users only to ex-
press synthesizable circuits [8]. A study of bugs in open-source
hardware projects did not find any issues with synthesizability
in practice [31]. However, novices might still make these kinds
of mistakes in Verilog, and they are pervasive in the benchmarks
targeted by CirFix [6]. Thus, we employ the open-source Verilog

buggy_design.vtestbench.csv

 add guard

 replace literal

 conditional
 overwrite

Apply Repair Template
(encodes all possible fixes)

Cannot Repair

static
analysis
driven pre-
processing

Success:
φ0= x, α0= y, …

 patch verilog

try a
different
template

fixed_design.v

Synthesizer
Tries to find minimal change based on repair template.

∃ φi, αi . correct output s.t. min(sum(φi))

Frontend

1 2

3

4

5

yosys: btor2

sum(φi)
> 3

<= 3

Figure 3: RTL-Repair Flow

simulator Verilator as a linter [41] to deal with two common issues
that prevent a circuit from being synthesizable.

Blocking and Non-Blocking Assignments. Synthesizable Verilog
for synchronous circuits generally consists of two different kinds
of processes: Ones that describe combinational logic, marked by a
sense list that triggers re-computation on the change of any signal,
and processes triggered by clock events that describe synchronous
logic (registers and memories). By convention, combinational pro-
cesses use blocking assignments, and synchronous logic processes
use non-blocking assignments [17]. If the linter warns about the
wrong kind of assignment, we automatically change it to the appro-
priate version depending on the type of process to ensure correct
synthesis with yosys [48].

Latches. are state elements that get updated when their input
changes. In modern ASIC technologies, latches are generally disal-
lowed in favor of clock edge-triggered flip-flops. Latches also cannot
be represented in the transition system format used by RTL-Repair.
Many Verilog beginners will unintentionally write code that de-
scribes a latch instead of the combinational logic they intended to
encode because of a missing assignment in a process. We remove
any latches in the Verilog description by providing a default value
for a signal whenever there is a warning from the static analysis
tool about a latch. We use zero as a default value since it is always
valid to assign regardless of the bit-width of the signal. If needed
for a repair, the default can be overwritten by the Replace Literals
repair template introduced in the next section.

4.2 Repair Templates
A repair template is a compiler pass that analyzes the Verilog AST
and adds a range of possible changes, thus describing a space of
possible repairs for the repair synthesizer. Each change is guarded
by an indicator variable q8 , which will disable the change when
set to zero. Besides that, many templates introduce additional free
variables U8 , which represent constants in the Verilog code that the
repair synthesizer can freely choose. If

∑#
8 q8 = 0, we turn off all

changes and obtain the original circuit. The repair synthesizer will
try to find an assignment to all synthesis variables q8 and U8 that
makes the circuit obey the I/O trace subject to<8=

∑#
8 q8 . Minimiz-

ing the number of changes has two advantages: (1) it ensures that
the synthesizer does not change code that is not relevant to the
given I/O trace, making it more likely that the fix will generalize
to other tests (2) the smaller the suggested repair, the easier it will
be for a developer to verify. We have developed three different
repair templates which are able to fix a wide range of bugs. In our
framework, new repair templates can be easily added without any
changes to the repair synthesizer as long as they use q8 and U8
variables as described above.

Our symbolic repair templates are inspired by the templates
used by CirFix [6]. However, while applying a CirFix template
will produce a single concrete change to the RTL description, an
application of a RTL-Repair template encodes a large set of changes
that the synthesizer can choose from. Concretely, while CirFix’s
Conditional repair template will pick a single random conditional
to invert, our Add Guard template will present the synthesizer
with the possibility to invert every single condition in the RTL

RTL-Repair: Fast Symbolic Repair of Hardware Design Code ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

description. Our templates are thus much more powerful compared
to CirFix’s, which explains why three templates are enough for
RTL-Repair to solve a large number of benchmarks.

Replace Literals Template. This template allows the repair synthe-
sizer to replace literal integer values with a freely chosen constant.
In order to ensure that we obtain a synthesizable circuit, we restrict
the integer literals that can be replaced with the ones appearing in
r-value expressions. Thus we exclude integer literals that specify
signal types (bit-width), parameters, and any other integer literals
that cannot be replaced with a non-constant expression. Figure 6
shows some examples of integer literals that can and cannot be
replaced.

Add Guard Template. This template allows the repair synthesizer
to invert or add a guard to the condition of any if-statement or the
right-hand side of any 1-bit assignment in the circuit. The trans-
form follows this template 4 → (¬?)4 ∧ ((¬?)0(∨(¬?)1)?), where
4 is the original expression, ¬? indicates an optional negation and
(∨(¬?)1)? an optional second part of the guard. The cost of invert-
ing 4 is one, the cost of adding a simple guard ∧0 is one, and the cost
of adding a more complex guard ∧(0 ∨ 1) is two. For 0 and 1, the
synthesizer is able to pick from a list of 1-bit variables that are part
of the circuit. Care has to be taken not to create new combinational
loops in the circuit since that would prevent us from synthesizing
it. We thus first calculate all combinational dependencies in the
original input circuit and then restrict 0 and 1 to variables that
won’t create any new dependencies for the left-hand side of the
assignment. Figure 5 demonstrates our conservative approach with
an example.

Conditional Overwrite Template. This template allows the repair
synthesizer to insert new assignments of a freely chosen constant
value to any signal.These assignments can happen either at the start
or the end of a process and can optionally be guarded. The guard is
composed of conditions extracted from the same process. Figure 4
shows an example. The cost of adding an unconditional assignment
is one (U8 in Figure 4). Each guard within the assignment has an

always @(posedge clk) begin
 if(rst) begin
 a <= 1'b0;
 end else if(cnd) begin
 b <= b + 1;
 end
end

 analyze assignments
 type: <=, vars: a, b 1

 extract conditions:
 rst, cnd2

 create conditional assignments for each variable3

 insert copies at start and end of process4

if(φi)

 if(φi+1? (αi+1? rst : !rst) : 1'b1 &&

 φi+2? (αi+2? cnd : !cnd) : 1'b1)

 a <= αi;

for a
and b

Figure 4: Conditional Overwrite Template: Allows the repair
synthesizer to assign every variable to an arbitrary constant
at the start and end of every process. This assignment can be
guarded by conditions mined from the same process.

assign ba = ((φi? 1'b0 : 1'b1) ^ (b & a)) &

 (φi+1? (

 ((αi? 1'b0 : 1'b1) ^ (αi+1? a : rst)) |

 (φi+2?

 ((αi2? 1'b0 : 1'b1) ^ (αi+3? a : rst))

 : 1'b0)

) : 1'b1)

 instantiate guard template: example for ba

assign ba = b & a;

// ...

always @(posedge clk) begin
 if(rst) begin
 a <= 1'b0;
 // ...
always @(*) begin
 if(d) begin
 a_next = 1'b0;
 // ...

 build combinational dependency graph:
 ba: {b, a}, a_next: {d}, a: {}

1

 for each condition, find possible guards:
 ba: ✔ a ({} ⊆ {b, a}), ✔ rst ({} ⊆ {b, a}),
 ✖ a_next ({d} ⊈ {b, a}),
 using a_next as guard would add a new edge to the
 dependency graph (ba ← d)

2

3

synchronous
dependencies are

ignored

optional negation

Figure 5: Add Guard Template: Allows the synthesizer to ap-
pend a guard to certain 1-bit expressions. We conservatively
choose possible guards to ensure that no combinational cy-
cles are created and synthesizability is maintained.

reg [1:0] out;
localparam P = 2'd1;
case(sel)
 2'b00: out <= #1 a;
 P: out <= #1 a + 2'd1;
endcase

constant expression may be
required →not replaced

literals that can be replaced
with a non-const expression

((φi)? αi : 2'd1)

Figure 6: Replace Literals Template: Conservatively replaces
literals in places where the expression is not required to
evaluate to a constant at compile time.

additional cost of one (U8+1 and U8+2). To maintain synthesizability,
our compiler pass first analyzes each process to determine which
signals are assigned to in it and whether it uses blocking or non-
blocking assignments. This is necessary since assigning the same
signal from multiple different processes leads to race conditions
in the Verilog simulation and is thus undesirable. We also want to
maintain the invariant that only one type of assignment is used
throughout a single process.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Kevin Laeufer, Brandon Fajardo, Abhik Ahuja, Vighnesh Iyer, Borivoje Nikolić, and Koushik Sen

4.3 Basic Synthesizer
We first discuss a very basic version of our synthesizer. The next
section covers how adaptive windowing can help us scale to larger
benchmarks.

Inputs. Our synthesizer takes in a circuit design with synthesis
variables q8 and U8 from the application of a repair template as well
as a testbench. The design is provided in the btor2 format, which is
obtained by running the synthesis tool yosys on the Verilog code.
This step will fail if the design is not synthesizable. The testbench is
in the format of a table with rows for each cycle of execution and
columns for each input and output signal of the circuit that we are
trying to repair.

Unknown Values. All registers start out uninitialized, and some
input signals might not be defined in certain cycles of the test
execution because the testbench author did not consider their value
to be relevant for the test. These unknown values are modeled with
Xs in Verilog. In our synthesis procedure, we either randomize or set
unknown values to zero. We chose to randomize when the original
testbench was using X values, as is the case for all benchmarks
from CirFix. We set unknown to zero if the original testbench was
using Verilator to match the behavior of that simulator.

Synthesizing a Repair. Having chosen concrete values for initial
states and unspecified inputs, we unroll the circuit and assert that
inputs and outputs have the values assigned to them from the
testbench while keeping the synthesis variables q8 and U8 symbolic.
Then we query the SMT-solver to obtain an assignment to the
synthesis variables that will make the testbench pass. If the solver
returns unsatisfiable, we know that the given template cannot repair
the circuit, and move on to the next template. If the solver returns
a solution, we try to minimize the number of changes.

Synthesizing a Minimal Repair. We observed in our experiment
that when a solution exists, the minimal solution generally only
takes a small number of changes (see Table 5). We thus start search-
ing for a minimal solution in a linear search, starting with one
change. We encode the number of changes as a constraint into
our SMT query. If a solution exists, we found a minimal solution
which is returned to the frontend to repair the Verilog code. If the
solver returns unsatisfiable, we increase the number of expected
changes by one. This optimization can be framed as an instance of
the Max-SMT problem [12], however, most solvers that perform
well on hardware circuits do not implement Max-SMT directly. We
thus stick with our customized algorithm allowing us to use a wide
range of specialized SMT solvers.

4.4 Adaptive Windowing
As part of our basic synthesis process, we need to unroll the sys-
tem once for every cycle in the testbench execution. Unfortunately,
bounded model checking, and thus also our synthesis algorithm,
scales purely with the number of times we unroll the system. Adap-
tive windowing allows us to synthesize repairs while unrolling the
system for only a small number of cycles. We observed that human
developers often start investigating a bug by looking at the signal
values around the cycle where the first violation occurred. To make
debugging tractable, developers may assume that the state of the

circuit a couple of cycles before the bug manifests is correct, as
this makes it simpler to trace the signal values to find a reason for
the divergence. We can make use of this assumption to reduce the
scope of our unrolling.

We define two values: :?0BC and :5 DCDA4 , which specify how
many cycles before and after the first output divergence we unroll
our system. Our algorithm starts with both values set to zero. Thus,
in the first iteration, our tool concretely executes the original circuit
until the step at which the output divergence occurred and then
starts the symbolic unrolling from the concrete state reached after
those steps. If all state update functions are correct and there is
only a bug in how the output is computed from current state and
inputs, then this would be enough to obtain a correct repair.

We generally sample all minimal repairs for a given :?0BC and
:5 DCDA4 and then evaluate them through a concrete simulation
using the repaired circuit. If the test passes, we have found a correct
repair which we return from the synthesizer. If none of the repairs
work, we analyze their failures. If all of them failed at or before
the same cycle as the original failure, then we assume that some
state update in the past went wrong, and we need to increase the
symbolic execution window towards the past. We thus increment
:?0BC by a constant. Generally, we chose step size two. If, on the
other hand, there exists a repair that makes the earlier failure go
away but then leads to a failure later in the circuit execution, we
assume that we are missing some future context, and we, therefore,
increase :5 DCDA4 such that our repair window includes the newly
failing cycle. The window size is the sum of :?0BC and :5 DCDA4 . In
our RTL-Repair implementation, we set the maximumwindow size
to 32, after which the tool will give up and declare that it cannot find
a repair. We also observed that when there are many failing repairs,
it generally pays off to go to a larger window size immediately.
Our implementation thus advances to the next window sizer after
finding four failing repairs.

We have found this new adaptive windowing technique to im-
prove scalability for benchmarkswith longer testbenches drastically.
One benchmark, in particular, went from timing out after one hour
to being repaired in less than ten seconds.

5 OUTPUT / STATE DIVERGENCE DELTA
We formalize the insight behind our adaptive windowing technique
through the output/state divergence delta (OSDD) metric. We as-
sume that we are provided with a working digital synchronous
circuit (the ground truth), a buggy version of the same design, a
sequence of test inputs, and a starting assignment to all state vari-
ables. We then calculate the OSDD by comparing outputs and state
variables on every cycle of the test execution. We note the distance
between the first divergence in state values and the first divergence
in output values. If the state never diverges, then the OSDD is zero.
Otherwise, the OSDD is the number of steps from when the state
first diverges to when the output diverges, plus one. An illustrated
example of this is shown in Figure 7. This definition requires that
the state and output variables are the same between the buggy and
ground-truth versions which is true for all benchmarks that can be
correctly repaired by RTL-Repair and CirFix.

RTL-Repair: Fast Symbolic Repair of Hardware Design Code ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 2: Output / State Divergence Delta Evaluation:
Testbench (TB) length in cycles, first error (output diver-
gence), output/state divergence delta (OSDD), size of the re-
pair window used by RTL-Repair as well as repair results.
Two i2c benchmarks are excluded as they are not clocked,
and thus, the OSDD is not defined.

Benchmark TB
Cy
cle
s

Fir
st
Er
ror

OS
DD

W
ind
ow

RT
L-R

ep
air

Ci
rFi
x

decoder_w1 28 0 0 [0 .. 10] ✔ ✖

decoder_w2 28 0 0 [0 .. 20] ✖ ○

counter_w1 27 4 n/a ○ ✔

counter_k1 26 3 1 [-2 .. 0] ✔ ✔

counter_w2 26 19 1 [-2 .. 0] ✔ ✔

flop_w1 11 0 1 [-1 .. 0] ✔ ✔

flop_w2 11 0 1 [-2 .. 1] ✔ ✔

fsm_w1 37 32 1 ○ ○

fsm_s2 37 9 1 ✔ ✖

fsm_w2 37 2 3 ✔ ✖

fsm_s1 37 10 11 ✔ ✖

shift_w1 27 8 1 ✔ ✖

shift_w2 27 0 1 [-1 .. 0] ✔ ✔

shift_k1 29 7 n/a ✖ ✔

mux_k1 151 10 1 ○ ○

mux_w2 151 20 1 [0 .. 10] ✔ ✖

mux_w1 151 10 1 [0 .. 20] ✔ ✖

i2c_k1 171957 1238 13 [-4 .. 0] ✔ ✔

sha3_w1 357 24 1 ○ ✔

sha3_r1 357 24 1 ○ ○

sha3_w2 357 46 n/a ○ ○

sha3_s1 129 31 1 [-2 .. 0] ✔ ✖

pairing_w1 74149 74119 73346 ○ ○

pairing_k1 74149 775 2 ○ ○

pairing_w2 74149 74119 74109 ○ ○

reed_b1 166166 2967 2963 ○ ○

reed_o1 166166 0 0 ○ ✖

sdram_w2 636 130 1 [-4 .. 5] ✔ ○

sdram_k2 636 64 25 ✔ ○

sdram_w1 636 1 1 ○ ✖

We empirically calculated the OSDD by discretizing the test-
bench waveforms and extracting output and state (register) infor-
mation from the synthesized netlist of the circuits. Our results are
shown in Table 2. The benchmark with the largest OSDD that was
successfully repaired is sdram_k2, with an OSDD of 25. However,
our static analysis-based preprocessing step solved this benchmark,
which does not require any unrollings (see Table 5). The next bench-
mark is i2c_k1 with an OSDD of 13, which was actually solved
by the unrolling-based repair synthesizer. Both RTL-Repair and
CirFix were only able to solve benchmarks with low OSDD. High
OSDD benchmarks are difficult because both tools try to reason
about the execution of the system.

For all benchmarks repaired by RTL-Repair’s synthesis engine,
the OSDD provides a lower bound for how far the repair window
needs to be expanded into the past. The i2c_k1 benchmark only
requires a repair window of size 4, which is lower than the OSDD.

i0
same initial

state

correct:

buggy: …

output diverges
→bug is revealed

state may diverge somewhere in between

s0 sc,1 sc,2 sc,3oc,0
=ob,0

…

s0 sb,1 sb,2 sb,3

i1

oc,1
=ob,1

i2

oc,2
≠ob,2

=

(a)We start the correct and the buggy system in the same state and execute
both with the same inputs until the outputs become unequal, which
happens in our example after two state updates.

oc,2
≠ob,2

i0

correct:

buggy:

same initial
state

…

output diverges
→bug is revealed

s0 sc,1 sc,2 sc,3 …

s0 sb,1 sb,2 sb,3

i1 i2= ==

OSDD=0, output functions are different

(b) If all states before the output divergence are equivalent, then we define
the OSDD to be zero.

oc,2
≠ob,2

i0

correct:

buggy:

same initial
state

…

output diverges
→bug is revealed

s0 sc,1 sc,2 sc,3 …

s0 sb,1 sb,2 sb,3

i1 i2= ≠=

OSDD=1, state update is buggy

(c) OSDD=1

Figure 7: Output / State Divergence Delta (OSDD) Example

While the buggy register value diverges already 12 cycles before
the bug manifests, it is also updated only four cycles in the past,
allowing our repair synthesizer to generate the correct repair with
only 4 cycles of context. Other benchmarks require larger repair
windows because future information needs to be taken into account.
For example, the decoder benchmarks contain no state variables,
and their OSDD is 0. However, several different inputs and, there-
fore, several cycles of test execution are needed in order to reveal
all the bugs in the design.

6 EVALUATION
We compare RTL-Repair to the prior state-of-the-art tool CirFix
in terms of the quality of repairs and how quickly the repairs are
provided. RTL-Repair provides more correct repairs and is often
orders of magnitude faster than CirFix. We also performed a de-
tailed analysis of the various components of RTL-Repair and how
they contribute to its performance.

6.1 Experimental Setup
All our experiments were run on a server with 252GiB of RAM and
two 8-core Intel Xeon E5-2667 CPUs with hyperthreading. While
the core algorithms of both RTL-Repair and CirFix could benefit
from multiple cores, their current implementations are strictly se-
quential, and thus, multiple cores are only used to run different
benchmarks in parallel to speed up our evaluation. We observed
that CirFix would run slower on our machine than reported in the
original paper. This could be due to the slower CPU, or VCS might
have higher startup costs on our machine due to a different license
server setup. We increased the timeout from 12h to 16h to ensure

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Kevin Laeufer, Brandon Fajardo, Abhik Ahuja, Vighnesh Iyer, Borivoje Nikolić, and Koushik Sen

that CirFix has the time to generate all repairs reported by the
original paper.

The RTL-Repair prototype consists of a frontend that uses the
PyVerilog [44] library to implement our symbolic repair templates.
The Yosys [48] tool converts Verilog designs into a transition system
in the btor2 format [38]. A synthesis engine written in Rust takes
the I/O trace and transition system to find a suitable repair. While
the synthesis engine can work with many different SMT solvers,
we use bitwuzla [37] in our experiments since it offers the best
performance on average.

We extended the CirFix prototype [6] to allow us to run different
benchmarks in parallel in order to speed up the evaluation.The core
algorithm remains untouched, and our results are comparable to
those reported in the CirFix paper. Table 3 shows the benchmarks
from the CirFix paper that are used in our evaluation and maps

Table 3: Benchmark Overview. Relates benchmarks from
CirFix [6] to the short names used throughout this paper.

Project Defect Short Name

decoder 3-8 Two separate numeric errors decoder_w1
Incorrect assignment decoder_w2

counter Incorrect sensitivity list counter_w1
Incorrect reset counter_k1
Incorrect incremental of counter counter_w2

flip flop Incorrect conditional flop_w1
Branches of if-statement swapped flop_w2

fsm full Incorrect case statement fsm_w1
Incorrectly blocking assignments fsm_s2
Assignment to next state and default in
case statement omitted fsm_w2

Assignment to next state omitted, in-
correct sensitivity list fsm_s1

lshift reg Incorrect blocking assignment shift_w1
Incorrect conditional shift_w2
Incorrect sensitivity list shift_k1

mux 4 1 1 bit instead of 4 bit output mux_k1
Hex instead of binary constants mux_w2
Three separate numeric errors mux_w1

i2c Incorrect sensitivity list i2c_w1
Incorrect address assignment i2c_w2
No command acknowledgement i2c_k1

sha3 Off-by-one error in loop sha3_w1
Incorrect bitwise negation sha3_r1
Incorrect assignment to wires sha3_w2
Skipped buffer overflow check sha3_s1

tate pairing Incorrect logic for bitshifting pairing_w1
Incorrect operator for bitshifting pairing_k1
Incorrect instantiation of modules pairing_w2

reed-solomon Insufficient register size reed_b1
decoder Incorrect sensitivity list for reset reed_o1

sdram- Numeric error in definitions sdram_w2
controller Incorrect case statement sdram_k2

Incorrect assignments to registers dur-
ing synchronous reset sdram_w1

Table 4: Repair Correctness Evaluation
Symbols:✔ test passed, ✖ test failed, ○ no repair to test
An empty cell means that the test did not apply. Overall a
repair is judged a success (✔) if all applicable tests pass. The
number in the right-most column denotes the number of
changes comprising the repair.

Benchmark Tool To
ol
Sta
tus

Te
stb
en
ch

Ci
rFi
x A
uth
or

Ga
te-
Le
ve
l

iVe
rilo
g

Ex
ten
de
d

Ov
era
ll

decoder_w1 rtlrepair ✔ ✔ ✔ ✔ 2✔
cirfix ✔ ✔ ✔ ✔ ✖ 3 ✖

decoder_w2 rtlrepair ✔ ✔ ✔ ✖ 5 ✖
cirfix ○ ○

counter_w1 rtlrepair ○ ○

cirfix ✔ ✔ ✔ ✔ ✔ 1✔
counter_k1 rtlrepair ✔ ✔ ✔ ✔ 1✔

cirfix ✔ ✔ ✔ ✔ ✔ 5✔
counter_w2 rtlrepair ✔ ✔ ✔ ✔ 2✔

cirfix ✔ ✔ ✔ ✔ ✔ 1✔
flop_w1 rtlrepair ✔ ✔ ✔ ✔ 0✔

cirfix ✔ ✔ ✔ ✔ ✔ 1✔
flop_w2 rtlrepair ✔ ✔ ✔ ✔ 0✔

cirfix ✔ ✔ ✔ ✔ ✔ 2✔
fsm_s2 rtlrepair ✔ ✔ ✔ ✔ 15✔

cirfix ✔ ✔ ✖ ✖ ✔ 2 ✖
fsm_w2 rtlrepair ✔ ✔ ✔ ✔ 3✔

cirfix ✔ ✔ ✖ ✖ ✔ 1 ✖
fsm_s1 rtlrepair ✔ ✔ ✔ ✔ 2✔

cirfix ✔ ✔ ✔ ✖ ✔ 1 ✖
shift_w1 rtlrepair ✔ ✔ ✔ ✔ 4✔

cirfix ✔ ✔ ✔ ✔ ✖ 1 ✖
shift_w2 rtlrepair ✔ ✔ ✔ ✔ 0✔

cirfix ✔ ✔ ✔ ✔ ✔ 1✔
shift_k1 rtlrepair ✔ ✖ ✖ ✖ 0 ✖

cirfix ✔ ✔ ✔ ✔ ✔ 1✔
mux_w2 rtlrepair ✔ ✔ ✔ ✔ 2✔

cirfix ✔ ✔ ✖ ✖ ✔ 3 ✖
mux_w1 rtlrepair ✔ ✔ ✔ ✔ 9✔

cirfix ✔ ✔ ✖ ✖ ✔ 4 ✖
i2c_w1 rtlrepair ○ ○

cirfix ✔ ✔ ✔ 1✔
i2c_w2 rtlrepair ○ ○

cirfix ✔ ✔ ✖ 1 ✖
i2c_k1 rtlrepair ✔ ✔ 1✔

cirfix ✔ ✔ ✔ 1✔
sha3_w1 rtlrepair ○ ○

cirfix ✔ ✔ ✔ ✔ ✔ 1✔
sha3_s1 rtlrepair ✔ ✔ ✔ ✔ 1✔

cirfix ✔ ✔ ✔ ✖ ✔ 1 ✖
reed_o1 rtlrepair ○ ○

cirfix ✔ ✔ ✔ ✖ ✔ 2 ✖
sdram_w2 rtlrepair ✔ ✔ ✔ 2✔

cirfix ○ ○

sdram_k2 rtlrepair ✔ ✔ ✔ 2✔
cirfix ○ ○

sdram_w1 rtlrepair ○ ○

cirfix ✔ ✔ ✔ ✖ 2 ✖

RTL-Repair: Fast Symbolic Repair of Hardware Design Code ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

- ({en,A,B,C} == 4'b1010)? 8'b1111_1011 :
+ ({en,A,B,C} == 4'b1000)? 8'b1111_101 1 :
 ({en,A,B,C} == 4'b1011)? 8'b1111_0111 :
 ({en,A,B,C} == 4'b1100)? 8'b1110_1111 :
 ({en,A,B,C} == 4'b1101)? 8'b1101_1111 :
 ({en,A,B,C} == 4'b1110)? 8'b1011_1111 :
 ({en,A,B,C} == 4'b1111)? 8'b0111_1111 :
- 8'b1111_1111;
+ 8'b0111_1111;

- ({en,A,B,C} == 4'b1000)? 8'b1111_1011 :
+ ({en,A,B,C} == 4'b1010)? 8'b1111_1011 :
 ({en,A,B,C} == 4'b1011)? 8'b1111_0111 :
 ({en,A,B,C} == 4'b1100)? 8'b1110_1111 :
 ({en,A,B,C} == 4'b1101)? 8'b1101_1111 :
 ({en,A,B,C} == 4'b1110)? 8'b1011_1111 :
 ({en,A,B,C} == 4'b1111)? 8'b0111_1111 :
- 8'b0111_1111;
+ 8'b1111_1111;

- ({en,A,B,C} == 4'b1000)? 8'b1111_1011 :
+ ({en,A,A,C} == 4'b1000)? 8'b1111_1011 :
- ({en,A,B,C} == 4'b1011)? 8'b1111_0111 :
+ ({en,A,B,C-1}==4'b1011)? 8'b1111_0111 :
 ({en,A,B,C} == 4'b1100)? 8'b1110_1111 :
 ({en,A,B,C} == 4'b1101)? 8'b1101_1111 :
 ({en,A,B,C} == 4'b1110)? 8'b1011_1111 :
- ({en,A,B,C} == 4'b1111)? 8'b0111_1111 :
- 8'b0111_1111 ;
+ (C - 1);

decoder_w1: Two separate numeric errors RTL-Repair (0.4s,
Replace Literals):
Max-SMT
guarantees a
minimal number of
changes in the
solution and thus no
untested
functionality is
changed.

CirFix (7h): repair passes testbench, but changes
code that is never tested.

counter_w1: Incorrect sensitivity list
- always @(posedge clk) begin : COUNTER
+ always @(clk) begin : COUNTER

- always @(clk) begin : COUNTER
+ always @(posedge clk) begin : COUNTER

RTL-Repair (0.9s): Cannot find a repair. Removing the posedge
fundamentally changes the synthesized circuit, turning a process
describing registers (state elements) into a process describing a purely
combinatorial circuit. Since the repair synthesizer works directly on the
synthesized circuit, it cannot reason about this bug.

CirFix (35s): has a matching template that adds a posedge to a random
process. This benchmark features only a single process.

sha3_s1: Skipped buffer overflow check
- assign update = (accept | (state & (~buffer_full))) & (~done);
+ assign update = (accept | (state)) & (~done);

- always @(posedge clk)
+ always @(*)
 if (reset) done <= 0;
 else if (state & out_ready) done <= 1;

CirFix (1.6min): changes done from a register to a
latch. While this works to fix the bug in simulation, it
creates unwanted synthesis-simulation mismatch.

- assign update = (accept | (state)) & (~done);

+ assign update = (accept | (state)) & (~done) & (~f_ack) ;

RTL-Repair (4s, Add Guard): proposes a simple change to the correct
expression while maintaining a circuit that synthesizes correctly. A better
testbench would be needed in order to distinguish between this repair and
the ground truth.

sdram_w1: Incorrect assignments to
registers during synchronous reset
 always @ (posedge clk)
 if (~rst_n) begin
 [...]
- wr_data_r <= 1'b0;
- rd_data_r <= 1'b0;
+ rd_data_r <= data_in;

 always @ (posedge clk)
 if (~rst_n) begin
 [...]
+ rd_data_r <= IDLE;
+ state_cnt_next = 4'd0;

CirFix (7h): correctly adds back the reset for rd_data_r (IDLE is 0). In
the ground truth circuit, the reset value of wr_data_r is never read and
thus unnecessary. The assignment to state_cnt_next creates a race
condition.

 always @ (posedge clk)
 [...]
+ if(!rst_n) rd_data_r <= 16'b0;

RTL-Repair (1.5min, Basic Synth, Conditional
Overwrite): the conditional overwrite template
correctly generates a minimal repair. However, the
adaptive windowing algorithm gives up too soon and
the repair is only found by the more precise but much
slower basic synthesizer if we increase the timeout
from 60s to 90s.

diff original vs. bug diff bug vs. our repair

diff bug vs. CirFix repair

diff original vs. bug

diff bug vs. CirFix repair

diff original vs. bug diff bug vs. CirFix repair

diff bug vs.
our repair

diff original vs. bug

diff bug vs.
CirFix repair

diff bug vs. our repair

Figure 8: Qualitative comparison of RTL-Repair and CirFix repairs on four different benchmarks. The decoder_w1 result
shows how the Max-SMT-based approach can help RTL-Repair generate repairs that leave untested features untouched, while
CirFix sometimes introduces new bugs. counter_w1 is a good example for a bug that RTL-Repair cannot tackle because it
leads to synthesis problems. sdram_w1 shows how RTL-Repair avoids introducing new bugs by minimizing repairs.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Kevin Laeufer, Brandon Fajardo, Abhik Ahuja, Vighnesh Iyer, Borivoje Nikolić, and Koushik Sen

Table 5: Repair Speed Evaluation. A direct comparison of RTL-Repair and CirFix is on the right, and the performance breakdown
of the RTL-Repair components is on the left. A bold number indicates the number of changes performed. The Basic Synthesizer
column shows the performance of RTL-Repair when benchmarks are naively unrolled without our adaptive windowing
technique. Symbols:✔ generated correct repair, ✖ generated incorrect repair, ○ no repair generated

Benchmark Prepr
ocess

ing

Repla
ce Li

terals

Add
Guar

d
Cond

ition
al Ov

erwr
ite

Basic
Synth

esize
r

RTL-
Repa

ir
CirFi

x
Spee

dup

decoder_w1 0 0.16s 2✔ 0.18s ○ 0.09s ○ 0.09s ✔ 0.41s ✔ 0.39s ✖ 7.21h 66,904x
decoder_w2 0 0.18s 5 ✖ 0.26s ○ 0.10s ○ 0.09s ✖ 0.59s ✖ 0.68s Timeout 85,149x
counter_w1 6 0.44s ○ 0.11s ○ 0.13s ○ 0.13s ○ 0.83s ○ 0.83s ✔ 35.09s 42x
counter_k1 0 0.18s ○ 0.12s ○ 0.08s 1✔ 0.09s ✔ 0.65s ✔ 0.60s ✔ 13.31h 79,945x
counter_w2 0 0.17s ○ 0.20s ○ 0.19s 2✔ 0.10s ✔ 0.67s ✔ 0.75s ✔ 14.19h 67,978x

flop_w1 0 0.18s ○ 0.11s 1✔ 0.11s ○ 0.10s ✔ 0.45s ✔ 0.45s ✔ 15.28s 34x
flop_w2 0 0.17s ○ 0.11s 2✔ 0.11s ○ 0.10s ✔ 0.44s ✔ 0.43s ✔ 28.57min 3,961x
fsm_w1 0 0.17s ○ 0.96s ○ 1.44s ○ 2.65s ○ 1.26s ○ 5.76s Timeout 10,007x
fsm_s2 15 0.46s Repaired by preprocessing ✔ 0.66s ✔ 0.65s ✖ 2.03h 11,191x
fsm_w2 3 0.70s Repaired by preprocessing ✔ 0.90s ✔ 0.90s ✖ 44.83min 2,990x
fsm_s1 2 0.67s Repaired by preprocessing ✔ 0.90s ✔ 0.90s ✖ 1.11min 73x

shift_w1 4 0.43s Repaired by preprocessing ✔ 0.58s ✔ 0.57s ✖ 28.58s 50x
shift_w2 0 0.16s ○ 0.13s 1✔ 0.10s ○ 0.11s ✔ 0.52s ✔ 0.46s ✔ 35.11s 75x
shift_k1 0 0.17s ○ 0.12s ✖ 0.34s ✖ 0.34s ✔ 15.51s 45x
mux_k1 4 0.79s ○ 0.12s ○ 0.08s ○ 0.14s ✖ 1.15s ○ 1.28s Timeout 44,840x
mux_w2 0 0.17s 2✔ 0.13s ○ 0.08s ○ 0.09s ✔ 0.47s ✔ 0.36s ✖ 5.42h 54,731x
mux_w1 6 0.58s 3✔ 0.10s ○ 0.06s ○ 0.15s ✔ 0.86s ✔ 0.81s ✖ 7.56h 33,542x
i2c_w1 1 0.85s ○ 0.18s ○ 0.46s ○ 0.31s ○ 1.82s ○ 1.90s ✔ 3.86min 122x
i2c_w2 1 0.84s ○ 0.19s ○ 0.41s ○ 0.29s ○ 1.70s ○ 1.81s ✖ 1.23min 40x
i2c_k1 0 0.20s ○ 8.52s ○ 1.17s 1✔ 3.57s Timeout ✔ 13.17s ✔ 41.10min 187x

sha3_w1 0 0.24s ○ 13.73s ○ 13.89s ○ 14.32s ○ 31.38s ○ 41.34s ✔ 1.19min 1x
sha3_r1 0 0.22s Timeout ○ 0.36s ○ 0.34s Timeout Timeout Timeout 964x
sha3_w2 0 0.24s ○ 0.36s ○ 0.64s ○ 22.49s ○ 34.80s ○ 21.78s Timeout 2,644x
sha3_s1 0 0.20s ○ 3.27s 1✔ 0.33s ○ 10.15s ✔ 5.98s ✔ 3.77s ✖ 1.60min 25x

pairing_w1 0 18.49s Timeout ○ 41.20s ○ 45.44s Timeout Timeout Timeout 963x
pairing_k1 0 18.46s Timeout ○ 41.79s ○ 42.03s Timeout Timeout Timeout 963x
pairing_w2 0 18.42s Timeout ○ 41.11s ○ 41.24s Timeout Timeout Timeout 963x

reed_b1 0 0.33s ○ 1.79s ○ 1.09s ○ 1.81s ○ 5.44s ○ 5.52s Timeout 10,428x
reed_o1 0 0.36s ○ 1.35s ○ 0.85s ○ 0.89s ○ 3.59s ○ 3.63s ✖ 9.50h 9,426x

sdram_w2 0 0.18s 2✔ 2.27s ○ 0.37s ○ 25.56s Timeout ✔ 2.59s Timeout 22,231x
sdram_k2 2 0.83s Repaired by preprocessing ✔ 1.17s ✔ 1.20s Timeout 48,157x
sdram_w1 0 0.18s ○ 0.32s ○ 0.38s ○ 0.62s Timeout ○ 1.65s ✖ 6.91h 15,055x

them to the short names used throughout this paper. We created
I/O traces from the provided ground truth versions of each circuit.
We had to manually remove a tri-state bus and an asynchronous
reset for two benchmarks as these constructs are not supported by
RTL-Repair. This conversion could be automated in the future. The
source code of RTL-Repair, our modified version of CirFix and all
experimental scripts are available on GitHub: https://github.com/
ekiwi/rtl-repair

6.2 Quality of Repairs
The most important metric for a repair tool is the number of bugs
it can successfully repair. This requires us to classify any repair
the tool comes up with as correct or incorrect. The authors of
CirFix followed a two-step approach: (1) By design, all repairs that
CirFix returns pass the provided testbench. These repairs were

described to be ”plausible”. (2) In a second step, the first author
of the paper would manually inspect each ”plausible” repair and
determine whether the repair is ”correct”. 1 We also inspected the
repairs CirFix performed and found that many seemed incorrect
to us.

Many of these disagreements relate to what each research team
focuses on repairing. It appears that the CirFix authors are focused
on repairing the Verilog simulation of a circuit, which CirFix ac-
complishes in many cases. However, the goal of RTL-Repair is
to repair the circuit that is described by the Verilog simulation
and not just the simulation itself. Under this framing, repairs that
fix the simulation but lead to synthesis-simulation mismatch (see
Section 2.1) are incorrect. Since these mismatches are notoriously
difficult to debug, CirFix might cause more work than it saves.
1Source: personal communication with the authors.

https://github.com/ekiwi/rtl-repair
https://github.com/ekiwi/rtl-repair

RTL-Repair: Fast Symbolic Repair of Hardware Design Code ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A common way to detect synthesis-simulation mismatch is so-
called gate-level simulation. For this purpose, we take the output
of our synthesis tool in the form of a low-level Verilog descrip-
tion and plug it into the original testbench. Sometimes gate-level
simulation fails, not because of an actual mismatch but because
of various X-propagation issues. Therefore we only perform the
gate-level simulation check if it works with the ground truth ver-
sion of the circuit. We add another automated check for simulator
compatibility: If the original circuit works with the open-source
iverilog simulator [47], the repaired version should also work with
iverilog. This helps us filter out repairs that rely on race conditions
or otherwise ill-defined Verilog features.

The importance of avoiding synthesis-simulation mismatch is il-
lustrated by the mux_w1 benchmark, which CirFix repairs through
a ”clever” combination of blocking and non-blocking assignments.
A value is overwritten by a non-blocking statement, which appears
in the program order before the blocking statement, which assigns
the original default value. This repair fixes the simulation but is
not correctly understood by the synthesis tool, leading to a much
harder-to-detect and debug problem for the developer to deal with.

Finally, we noticed a problem with the testbench accompanying
the decoder benchmarks. It does not adequately test all functionality
of the design. We thus added an ”extended” testbench that tests all
relevant input combinations. This test shows one of the advantages
of minimizing the number of repairs in the RTL-Repair algorithm:
It ensures that RTL-Repair only changes code exercised by the
testbench. CirFix, on the other hand, ends up destroying functional
parts of the circuit that were not exercised by the testbench. The
second decoder benchmark contains errors in parts of the design
that were never tested by the original testbench and thus cannot be
repaired by any tool. If we provide RTL-Repair with the extended
testbench, it successfully finds the complete repair.

Overall, RTL-Repair finds 16 repairs that pass all our tests, while
CirFix finds 10. Figure 8 features a qualitative comparison of four
benchmarks, highlighting the strengths and weaknesses of both
tools. RTL-Repair also provides only two incorrect repairs.The first
one is due to the shortcomings in the decoder testbench. For the
shift_k1 benchmark, RTL-Repair incorrectly determines that no
repair is necessary since the synthesized circuit looks correct. This
could easily be filtered out by running the original testbench once
after a successful repair. With our more extensive testing in place,
we notice that only two multi-edit repairs generated by CirFix
are considered correct (counter_k1 and flop_w2). This calls into
question CirFix’s ability to generate multi-edit repairs that take
full advantage of the genetic algorithm.

6.3 Repair Speed
Table 5 shows how long RTL-Repair and CirFix take for each repair.
We used a timeout of 60 seconds for RTL-Repair and 16 hours for
CirFix. RTL-Repair generally provides results in a small number
of seconds, often several orders of magnitude faster than CirFix.
It gives almost instant feedback allowing a user to quickly decide
whether they want to use the repair suggestion.

We compare the adaptivewindowing technique used by RTL-Repair
to the basic synthesizer. For benchmarks with small testbench
lengths, the basic synthesizer is faster. But for longer testbenches

like the mux benchmarks, the adaptive windowing approach leads
to faster results. It allows us to solve two more benchmarks com-
pared to the basic synthesizer.

Under normal circumstances, RTL-Repair tries out repair tem-
plates in sequence and immediately returns as soon as a repair is
found. The left half of table 5 shows what happens if we turn off
this early exit. We can see that the repair templates do not overlap;
only a single repair template per benchmark generates a repair.
Each repair template fixes between three and four of the bench-
marks, demonstrating that the templates are not specific to a single
bug. We can also see that the number of changes for each repair is
small. Most often, only one or two changes are enough; the maxi-
mum is three changes to generate a correct repair. Five benchmarks
are fixed directly by our static-analysis-based preprocessing phase,
demonstrating the importance of combining static analysis with
more sophisticated repair techniques.

6.4 Open-Source Bug Repair
In addition to the CirFix benchmarks, which were specifically cre-
ated to test automated repair tools, we also applied our RTL-Repair
tool to a set of bugs mined from git commits to open-source FPGA
hardware projects [31]. Of the 20 reproducible bugs provided by the
prior work [31], we are able to use 12 with RTL-Repair. The other 8
contain non-synthesizable Verilog, use SystemVerilog features that
our parser is not able to deal with, or lack a ground-truth repair.

Table 6 shows our results. Overall, RTL-Repair provides repairs
that pass the provided testbench for 9 out of 12 bugs. However,
since this set of bugs was never intended to be used as a benchmark
for automated repair, most testbenches are quite minimalistic and
only enough to demonstrate the bug. We thus manually inspect
each repair and rate it on the following scale: (A) repair matches the

Table 6: RTL-Repair results for bugs from open-source
projects collected by the authors of “Debugging in the Brave
New World of Reconfigurable Hardware” (Table 2 in [31]).
All results were obtained using the incremental synthesizer
and with a timeout of 2min. “Bug Diff” indicates how many
lines need to be added or removed in order to go from the
repaired to the buggy version of the circuit. “TB” shows the
number of steps in the provided testbench.

Bug Diff TB Result andQuality Template

D4 +27 / -26 185 Timeout
D8 +2 / -2 14 1✔ 1.06s B Replace Literals
D9 +2 / -2 523k Timeout
D11 +0 / -2 17 1✔ 54.12s C Cond. Overwrite
D12 +1 / -1 16 1✔ 6.06s D Replace Literals
D13 +1 / -3 6 3✔ 1.54s C Cond. Overwrite
C1 +1 / -1 523k 1✔ 33.17s A Add Guard
C3 +1 / -7 523k ○ 21.56s
C4 +1 / -1 10 1✔ 1.83s A Add Guard
S1.R +1 / -1 10 1✔ 10.23s C Add Guard
S1.B +2 / -2 10 2✔ 9.09s D Add Guard
S2 +1 / -2 45 1✔ 0.73s C Replace Literals
S3 +12 / -35 13 2✔ 6.89s D Replace Literals

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Kevin Laeufer, Brandon Fajardo, Abhik Ahuja, Vighnesh Iyer, Borivoje Nikolić, and Koushik Sen

RTL-Repair (33s, Add Guard, A-Quality):
with the bitwuzla SMT solver the correct repair
is generated. In our testing, other SMT solvers
would identify the right expression to change,
but would pick a different guard expression,
leading to a new failure outside the maximum
repair window size.

- assign int_s_axis_tready[m] = int_axis_tready[select_reg* S_COUNT+m] || drop_reg;
+ assign int_s_axis_tready[m] = int_axis_tready[select_reg* M_COUNT+m] || drop_reg;
[...]
- wire s_axis_tvalid_mux = int_axis_tvalid[grant_encoded * M_COUNT + n] && grant_valid;
+ wire s_axis_tvalid_mux = int_axis_tvalid[grant_encoded * S_COUNT + n] && grant_valid;

- wire s_axis_tvalid_mux = int_axis_tvalid[grant_encoded * S_COUNT + n] && grant_valid;
+ wire s_axis_tvalid_mux = int_axis_tvalid[grant_encoded * 32'b1 + n] && grant_valid;

- end else if ((startup_hold || byte_accepted) && r_z_counter)
+ end else if ((startup_hold || byte_accepted))

- end else if ((startup_hold || byte_accepted))
+ end else if ((startup_hold || byte_accepted) & r_z_counter)

diff bug vs. our repair

C1: SDSPI - Deadlock diff original vs. bug

D8: AXI-Stream Switch - Misindexing
diff original
vs. bug

RTL-Repair (1s, Replace Literals, B-Quality): one expression is correctly repaired (M_COUNT == 32’b1). However, the
testbench passes without repairing the assignment to int_s_axis_tready[m] and thus no full repair can be provided.

diff bug vs.
our repair

- drop_frame_next = drop_frame_reg;
+ drop_frame_next = 1'b0;
[...]
 if(full_cur || full_wr || drop_frame_reg) begin
 drop_frame_next = 1'b1;

D12: AXIS FIFO - Failure-to-Update

- wire full_wr = ((wr_ptr_reg[ADDR_WIDTH] != wr_ptr_cur_reg[ADDR_WIDTH]) &&
+ wire full_wr = ((wr_ptr_reg[ADDR_WIDTH] != wr_ptr_cur_reg[32'b10010]) &&

RTL-Repair (6s, Replace Literals, D-Quality):
This repair changes how full_wr is designed such that
drop_frame_next will be correctly updated for the short
testbench (16 cycles) provided with the benchmark. However,
this repair won’t work in the general case and the expression
changed is fairly removed from where the original bug is.

diff bug vs. our repair

diff original vs. bug

 if(rst) begin
- wr_ptr_cur <= 0;
- drop_frame <= 0;

D11: AXIS Frame FIFO - Failure-to-Update

diff original vs. bug

+ drop_frame <= 1'b0;
 if(rst) begin

diff bug vs. our repair

RTL-Repair (1min, Conditional Overwrite, C-Quality):
The new assignment to drop_frame is not guarded by rst which
could lead to drop_frame unintentionally being reset in an
extended test. Guarding the assignment increases the cost by 1 and
thus will only be done by RTL-Repair if required by the testbench.

S1.R: AXI-Lite Demo - Protocol Violation
- if(~axi_arready && S_AXI_ARVALID && (!S_AXI_RVALID || S_AXI_RREADY)) begin
+ if(~axi_arready && S_AXI_ARVALID) begin

- if(~axi_arready && S_AXI_ARVALID) begin
+ if(~axi_arready && S_AXI_ARVALID && !axi_bvalid) begin

diff bug vs. our repair

diff original vs. bug
RTL-Repair (10s, Add
Guard, C-Quality):
Correct location, but an
incorrect expression that
overfits to the provided
testbench.

Figure 9: Repairs produced by RTL-Repair for the Open-Source bugs discussed in Section 6.4.

ground truth exactly, (B) repair performs some of the changes from
the ground truth, (C) repair changes the same expression as the
ground truth but in a different way, and (D) change is very different
from the ground truth. Figure 9 shows several example repairs.

In order to be able to tackle his new challenging benchmarkset,
we needed to improve our repair templates in order to make them
more powerful. The Add Guard template, for example, used to only
allow inversion of boolean conditions. We added the ability to add
another boolean condition as a guard. While we had to improve our
templates, we were still able to implement them in under 150 lines

of Python each, and we were able to keep the number of templates
at three.

While we did improve our templates, the core synthesis algo-
rithm remained largely untouched. This shows that while templates
need to be carefully engineered to work across a large set of repair
scenarios, the basic synthesis technique proposed in this paper
can be applied to a wide range of designs. Note that none of these
more realistic benchmarks struggled with synthesis-simulation mis-
match, and none were repaired by preprocessing alone. However,
while the bugs are all mined from open-source projects, most only
come with artificially short testbenches that are provided only to

RTL-Repair: Fast Symbolic Repair of Hardware Design Code ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

demonstrate each bug. This leads to many possible repairs that can
make the testbench pass. While RTL-Repair always provides a very
small repair, some of them are not very good. Sampling multiple
repairs and presenting them to the user could be a future fix to this
problem.

7 RELATED WORK
RTL-Repair and CirFix are currently the only end-to-end tools
that generate complete repairs from a buggy Verilog source code
and testbench alone. Recent work using LLMs assumes the pre-
cise fault location is known [5]. There are many fault localization
approaches for hardware, but none of them are exact [24, 40, 49].
Some other repair tools rely on C reference models [7] or formal
LTL properties [13, 16] instead of testbenches.

There has been work in the past on symbolic-analysis-based
repair for hardware [13, 15, 32]. However, it appears that none
of these approaches can deal with long-running testbenches and
instead focus on bugs that appear after one or two cycles of ex-
ecution. The work by Chang et.al. [15] is noteworthy because it
uses a two-step approach that first identifies faulty expressions and
then synthesizes a repair to replace them. A similar approach was
independently discovered years later for software repair with the
Angelix tool [14, 34, 36].

8 DISCUSSION
RTL-Repair clearly illustrates the power of symbolic analysis-based
repair techniques, providing more correct repairs orders of magni-
tude faster than the generate-and-validate based CirFix tool. We
carefully designed RTL-Repair to work with the exact same as-
sumptions as the prior work to make it a drop-in replacement for
CirFix. This shows that symbolic repair does not require formal
specifications.

Our repair templates are directly applied to the Verilog AST,
making it trivial to map the repair suggested by the synthesizer
back to the original design. Initially, we explored templates that
worked on the transition system representation, which led to repairs
that proved difficult to automatically incorporate into the high-level
Verilog code. Because of our standardized interface to the repair
synthesizer, new templates are easy to add.

We introduce gate-level simulation as a new standard for evalu-
ating automated repairs of hardware designs. This ensures that the
users of these tools are not in for a bad surprise when the automated
repair makes their Verilog simulation work but then leads to silent
bugs in the actual circuit when it is mapped to an FPGA or taped
out in a VLSI process.

RTL-Repair provides repair suggestions in a matter of seconds.
Through our adaptive windowing technique, this remains true,
even for larger benchmarks. With this level of responsiveness, we
imagine that RTL-Repair could be integrated into a Verilog IDE
to directly provide quick repair suggestions, similar to tools like
GitHub Copilot [21]. This would require more research into how
exactly RTL-Repair could be integrated with various forms of test-
benches and formal tests.

ACKNOWLEDGMENT
We would like to thank our shepherd, Aditya Kanade, and the
anonymous reviewers for helping us improve our paper. We are
also grateful to the CirFix authors, in particular Hammad Ahmad
and Westley Weimer, for detailed answers to our questions and for
providing an easy-to-use artifact with their paper.

This work was supported in part by Semiconductor Research Cor-
poration, by NSF grants CCF-1900968, CCF-1908870, CCRI-2016662,
POSE-2303735 and by SLICE Lab industrial sponsors and affiliates
Amazon, AMD, Apple, Google, Intel, NVIDIA andQualcomm, as
well as by SKY lab industrial sponsors and affiliates Accenture,
AMD, Anyscale, Google, IBM, Intel, Microsoft, Mohamed Bin Zayed
University of Artificial Intelligence, Samsung SDS, SAP, Uber, and
VMware. Any opinions, findings, conclusions, or recommendations
in this paper are solely those of the authors and do not necessarily
reflect the position or the policy of the sponsors.

A ARTIFACT APPENDIX
A.1 Abstract
Our artifact includes the full implementation of our RTL-Repair
tool, an improved version of the CirFix tool, which we used in our
comparison (see Section 6.1), as well as all scripts and benchmarks
used in our evaluation. We include scripts to collect all necessary
data to recreate Tables 1, 2, 4, 5 and 6. We also include a small demo
to demonstrate the reusability of our tool.

A.2 Artifact check-list (meta-information)
• Run-time environment:

– Synopsys VCS Simulator
– Python 3.10
– Rust 1.76.0
– OSS CAD Suite 2022-06-22:

∗ Verilator 4.x (tested with Verilator 4.225)
∗ bitwuzla 1.0-prerelease
∗ Icarus Verilog version 12.0
∗ Yosys 0.18+29

• Experiments: OSDD calculation, CirFix evaluation, RTL-Repair
evaluation with different settings, correctness checks

• How much disk space required (approximately)?: 20GB
• How much time is needed to prepare workflow (approxi-

mately)?: 10min (assuming VCS, Python and Rust are already
available)

• How much time is needed to complete experiments (approxi-
mately)?: 26h (2h + 24h for full CirFix evaluation)

• Publicly available?: Yes. On Github: https://github.com/ekiwi/rtl-
repair

• Code licenses: BSD 3-Clause License
• Archived DOI: https://doi.org/10.5281/zenodo.10798649

A.3 Description
A.3.1 How to access. We recommend cloning the GitHub reposi-
tory for the latest code:

https://github.com/ekiwi/rtl-repair

A.3.2 Software dependencies. Our artifact has been tested onUbuntu
20.04.6 LTS with VCS 2021.09, Python 3.10.6, and Rust 1.76.0.

https://github.com/ekiwi/rtl-repair
https://github.com/ekiwi/rtl-repair
https://doi.org/10.5281/zenodo.10798649
https://github.com/ekiwi/rtl-repair

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Kevin Laeufer, Brandon Fajardo, Abhik Ahuja, Vighnesh Iyer, Borivoje Nikolić, and Koushik Sen

A.4 Installation
You have to install all software mentioned in the artifact check-
list. Please see the Readme.md provided with the artifact for more
detailed information.

A.5 Evaluation and expected results
The artifact contains scripts to reproduce the following tables:

• Performance Overview (Table 1)
• OSDD (Table 2)
• Repair Correctness (Table 4)
• Repair Speed (Table 5)
• Open-Source Bug Results (Table 6)

Detailed instructions are provided in the Readme.md included
with the artifact.

A.6 Experiment customization
We provide a demo with the artifact, which makes it easy to intro-
duce new bugs into a Verilog design, run a test, and use RTL-Repair
to get a repair suggestion. Details are provided in the Readme.md
included with the artifact.

To experiment with different repair templates, please have a look
at the files in rtlrepair/templates.

A.7 Methodology
Submission, reviewing, and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] IEC/IEEE International Standard - Verilog(R) Register Transfer Level Synthesis.

IEEE/IEC 62142, 2005.
[2] IEEE Standard for SystemVerilog — Unified Hardware Design, Specification, and

Verification Language. IEEE Std. 1800, 2017.
[3] IEEE Standard for VHDL Language Reference Manual. IEEE Std. 1076, 2019.
[4] IEEE Standard for Universal Verification Methodology Language Reference Man-

ual. IEEE Std. 1800.2, 2020.
[5] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond

Pearce. Fixing Hardware Security Bugs with Large Language Models. arXiv
preprint arXiv:2302.01215, 2023.

[6] Hammad Ahmad, Yu Huang, and Westley Weimer. CirFix: Automatically Re-
pairing Defects in Hardware Design Code. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 990–1003, 2022.

[7] Bijan Alizadeh and Masoud Shiroei. Automatic Correction of RTL Designs Using
a Lightweight Partial High Level Synthesis. Integration, 91:173–181, 2023.

[8] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: Constructing
Hardware in a Scala Embedded Language. In DAC Design Automation Conference
2012, 2012.

[9] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version
2.6. Technical report, Department of Computer Science, The University of Iowa,
2017. Available at www.SMT-LIB.org.

[10] Clark Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability
Modulo Theories. In Handbook of Satisfiability. 2008.

[11] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan
Zhu, et al. Bounded Model Checking. Advances in computers, 58(11):117–148,
2003.

[12] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. az-an optimizing smt
solver. In Tools and Algorithms for the Construction and Analysis of Systems:
21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015, Proceedings 21, pages 194–199. Springer, 2015.

[13] Roderick Bloem and Franz Wotawa. Verification and Fault Localization in VHDL
Programs. Journal of the Telematics Engineering Society (TIV), 2:30–33, 2002.

[14] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. Angelic
Debugging. In Proceedings of the 33rd International Conference on Software Engi-
neering, pages 121–130, 2011.

[15] Kai-hui Chang, Ilya Wagner, Valeria Bertacco, and Igor L Markov. Automatic
Error Diagnosis and Correction for RTL Designs. In 2007 IEEE International High
Level Design Validation and Test Workshop, pages 65–72. IEEE, 2007.

[16] Matthias Cosler, Frederik Schmitt, Christopher Hahn, and Bernd Finkbeiner. Itera-
tive Circuit Repair Against Formal Specifications. arXiv preprint arXiv:2303.01158,
2023.

[17] Clifford E Cummings et al. Nonblocking assignments in verilog synthesis, coding
styles that kill! SNUG (Synopsys Users Group) 2000 User Papers, 2000.

[18] Amelia Dobis, Kevin Laeufer, Hans Jakob Damsgaard, Tjark Petersen, Kasper
Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye Andersen, Richard Lin, and
Martin Schoeberl. Verification of Chisel Hardware Designs with ChiselVerify.
Microprocessors and Microsystems, 96:104737, 2023.

[19] Peter Flake, Phil Moorby, Steve Golson, Arturo Salz, and Simon Davidmann.
Verilog HDL and Its Ancestors and Descendants. Proceedings of the ACM on
Programming Languages, 4(HOPL):1–90, 2020.

[20] Tristan Gingold et al. GHDL - VHDL 2008/93/87 simulator. http://ghdl.free.fr/,
2023.

[21] GitHub. GitHub Copilot. https://copilot.github.com/, 2023.
[22] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated Program

Repair. Communications of the ACM, 62(12):56–65, 2019.
[23] Chris Higgs, Stuart Hodgson, and Eric Wieser. cocotb. https://github.com/cocotb/

cocotb, 2021.
[24] Tai-Ying Jiang, C-NJ Liu, and Jing Ya Jou. Estimating Likelihood of Correctness

for Error Candidates to Assist Debugging Faulty HDL Designs. In 2005 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 5682–5685. IEEE,
2005.

[25] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
et al. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in
the Public Cloud. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA).

[26] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K Ganai. Robust
Boolean Reasoning for Equivalence Checking and Functional Property Verifi-
cation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 21(12):1377–1394, 2002.

[27] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
GenProg: A Generic Method for Automatic Software Repair. Ieee transactions on
software engineering, 38(1):54–72, 2011.

[28] Richard Lin and Kevin Laeufer. ChiselTest. https://github.com/ucb-bar/chiseltest,
2024.

[29] Fan Long and Martin Rinard. Automatic Patch Generation by Learning Correct
Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 298–312, 2016.

[30] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and
Baris Kasikci. Debugging in the Brave New World of Reconfigurable Hardware.
In Proceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 946–962, 2022.

[31] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Haoyang Zhang, AndrewQuinn, and
Baris Kasikci. Debugging in the Brave New World of Reconfigurable Hardware.
In Proceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, 2022.

[32] Jean Christophe Madre, Olivier Coudert, and Jean Paul Billon. Automating the
Diagnosis and the Rectification of Design Errors with PRIAM. In The Best of
ICCAD: 20 Years of Excellence in Computer-Aided Design, pages 17–27. Springer,
1989.

[33] Joao Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-Driven Clause Learn-
ing SAT Solvers. In Handbook of Satisfiability. 2021.

[34] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th international conference on software engineering, pages 691–701, 2016.

[35] Don Mills and Clifford E Cummings. RTL Coding Styles That Yield Simulation
and Synthesis Mismatches. In SNUG (Synopsys Users Group) 1999 Proceedings,
1999.

[36] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. Semfix: Program Repair via Semantic Analysis. In 2013 35th International
Conference on Software Engineering (ICSE), pages 772–781. IEEE, 2013.

[37] Aina Niemetz and Mathias Preiner. Bitwuzla at the SMT-COMP 2020. CoRR,
abs/2006.01621, 2020.

[38] Aina Niemetz, Mathias Preiner, Claire Wolf, and Armin Biere. Btor2, BtorMC
and Boolector 3.0. In International Conference on Computer Aided Verification,
pages 587–595. Springer, 2018.

[39] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An Analysis of Patch Plau-
sibility and Correctness for Generate-And-Validate Patch Generation Systems. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis,
pages 24–36, 2015.

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
http://ghdl.free.fr/
https://copilot.github.com/
https://github.com/cocotb/cocotb
https://github.com/cocotb/cocotb
https://github.com/ucb-bar/chiseltest

RTL-Repair: Fast Symbolic Repair of Hardware Design Code ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[40] Jiann-Chyi Ran, Yi-Yuan Chang, and Chia-Hung Lin. An Efficient Mechanism
for Debugging RTL Description. In The 3rd IEEE International Workshop on
System-on-Chip for Real-Time Applications, 2003. Proceedings., pages 370–373.
IEEE, 2003.

[41] Wilson Snyder et al. Verilator. https://www.veripool.org/wiki/verilator, 2023.
[42] Stuart Sutherland and Don Mills. Synthesizing systemverilog busting the myth

that systemverilog is only for verification. SNUG Silicon Valley, page 24, 2013.
[43] Synopsys. VCS. https://www.synopsys.com/verification/simulation.html, 2023.
[44] Shinya Takamaeda-Yamazaki. Pyverilog: A Python-Based Hardware Design

Processing Toolkit for Verilog HDL. In Applied Reconfigurable Computing: 11th
International Symposium, ARC 2015, Bochum, Germany, April 13-17, 2015, Proceed-
ings 11, pages 451–460. Springer, 2015.

[45] Lenny Truong, Steven Herbst, Rajsekhar Setaluri, Makai Mann, Ross Daly, Keyi
Zhang, Caleb Donovick, Daniel Stanley, Mark Horowitz, Clark Barrett, et al. fault:
A Python Embedded Domain-Specific Language for Metaprogramming Portable
Hardware Verification Components. In International Conference on Computer
Aided Verification, CAV’20, 2020.

[46] Mike Turpin. The dangers of living with an x (bugs hidden in your verilog). In
Synopsys Users Group Meeting, 2003.

[47] Stephen Williams et al. Icarus Verilog. https://steveicarus.github.io/iverilog/,
2023.

[48] ClaireWolf and Johann Glaser. Yosys-a free Verilog synthesis suite. In Proceedings
of the 21st Austrian Workshop on Microelectronics (Austrochip), 2013.

[49] Jiang Wu, Zhuo Zhang, Deheng Yang, Xiankai Meng, Jiayu He, Xiaoguang Mao,
and Yan Lei. Fault Localization for Hardware Design Code with Time-Aware
Program Spectrum. In 2022 IEEE 40th International Conference on Computer
Design (ICCD), pages 537–544. IEEE, 2022.

[50] Keyi Zhang, Zain Asgar, and Mark Horowitz. Bringing Source-Level Debugging
Frameworks to Hardware Generators. In Proceedings of the 59th ACM/IEEE Design
Automation Conference, DAC ’22, 2022.

https://www.veripool.org/wiki/verilator
https://www.synopsys.com/verification/simulation.html
https://steveicarus.github.io/iverilog/

	Abstract
	1 Introduction
	2 Background
	2.1 The SystemVerilog Language
	2.2 Bounded Model Checking.

	3 Repair Example
	4 The RTL-Repair Repair Algorithm
	4.1 Preprocessing with Static Analysis
	4.2 Repair Templates
	4.3 Basic Synthesizer
	4.4 Adaptive Windowing

	5 Output / State Divergence Delta
	6 Evaluation
	6.1 Experimental Setup
	6.2 Quality of Repairs
	6.3 Repair Speed
	6.4 Open-Source Bug Repair

	7 Related Work
	8 Discussion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Experiment customization
	A.7 Methodology

	References

