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ABSTRACT

Dynamic verification is widely used to increase confidence in the
correctness of RTL circuits during the pre-silicon design phase.
Despite numerous attempts over the last decades to automate the
stimuli generation based on coverage feedback, Coverage Directed
Test Generation (CDG) has not found the widespread adoption that
one would expect. Based on new ideas from the software testing
community around coverage-guided mutational fuzz testing, we
propose a new approach to the CDG problem which requires min-
imal setup and takes advantage of FPGA-accelerated simulation
for rapid testing. We provide test input and coverage definitions
that allow fuzz testing to be applied to RTL circuit verification.
In addition we propose and implement a series of transformation
passes that make it feasible to reset arbitrary RTL designs quickly, a
requirement for deterministic test execution. Alongside this paper
we provide rfuzz, a fully featured implementation of our testing
methodology which we make available as open-source software to
the research community. An empirical evaluation of rfuzz shows
promising results on archiving coverage for a wide range of differ-
ent RTL designs ranging from communication IPs to an industry
scale 64-bit CPU.
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1 INTRODUCTION

While formal verification has shown promising results for exhaus-
tively testing high quality designs [7], dynamic verification is still
the most easily accessible and thus heavily used verification ap-
proach. Software simulators for RTL circuit designs are widely
available and thus writing a test bench to simulate a new circuit
design under various inputs is an easy way to gain confidence in its
correctness. During or after the simulation, bugs are uncovered by
manual waveform inspection, comparing the execution to a golden
model or by various custom invariant (assertion) checkers. In order
to ensure that a sufficient portion of the device under test (DUT)
has been covered, various manual and automatic coverage metrics
are used.

Once we rely on these end-to-end coverage metrics to measure
the quality of test inputs, a natural research question that comes up
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is whether we can automate the stimuli generation with the goal of
maximizing the coverage numbers with minimal manual developer
intervention. When the coverage feedback is used to drive the
input generation, this problem is known as Coverage Directed Test
Generation (CDG). Various solutions have been proposed over the
last two decades, however, we argue that they are either designed
for a very narrow class of DUTs or require a good amount of expert
time, such as for constructing a DUT-specific Bayesian network [3].
This might explain why generator-based approaches, which require
the test engineer to manually specify biases from coverage reports,
are still the most widely used technique today.

Over the last couple of years, coverage-guided mutational fuzz
testing has emerged as one of the most effective testing techniques
for finding correctness bugs and security vulnerabilities in real-
world software systems [17]. This technique relies on the fact that
many programs that are interesting to test can be run in a short
amount of time with arbitrary bytes as input. The program under
test is augmented with lightweight instrumentation that provides
feedback on the coverage achieved by a particular input. Starting
from one or several seed inputs, the fuzz engine tries to achieve new
coverage by mutating previously discovered inputs. Once a new
interesting input is discovered after running the program under
test on it, it is added to the input pool to serve as a new starting
point in the input space exploration. Compared to more formal
techniques such as symbolic execution, fuzz testing has been able
to scale up to much bigger real-world programs with smaller setup
and engineering effort.

We believe that coverage-guided mutational fuzz testing is a
new and interesting design point in the space of solution to the
CDG problem. The approach of treating the test input as a series
of bits or bytes allows this technique to be applied to a wide range
of different circuits. Using FPGA-accelerated RTL simulation and
synthesizable coverage feedback we can archive a high test exe-
cution speed similar to how some clever engineering techniques
enabled fast fuzz testing speeds for software. In this regard, fuzz
testing is—to the best of our knowledge—the first CDG technique
to be designed specifically with FPGA emulation in mind [9].

In this paper we lay the ground work for applying coverage-
guided mutational fuzz testing to the CDG problem: We define the
test stimuli in such a way that mutation algorithms from software
testing can be directly applied. We solve the problem of determinis-
tic test execution in FPGA-accelerated simulation by introducing
transfomations for MetaReset transformation and Sparse Mem-
ories. We define the notion of Mux Toggle Coverage that can be
acquired during FPGA-accelerated simulation and used as feedback
to the fuzz testing process. We empirically evaluate the perfor-
mance of the proposed solutions on a variety of real world RTL
circuits ranging from communication peripheral IPs to CPU cores.
Finally we make our high-performance implementation of the pro-
posed testing approach available to the research community as
open-source software that can easily be used on a public cloud
infrastructure for FPGA-accelerated fuzz testing experiments.
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2 BACKGROUND

2.1 Dynamic Verification

In dynamic verification the Device Under Test (DUT) is executed
within a test bench that instantiates and drives the DUT with con-
crete test inputs (stimuli). The RTL description of the DUT is com-
piled into a fast software simulation which is then executed on a
general purpose CPU. The test bench can be written in a traditional
hardware description language (HDL) like VHDL or Verilog, a spe-
cial verification language like e or System Verilog, or in a traditional
programming language like C. It is then linked to the simulator and
executed in conjunction with the DUT.

Since dynamic verification looks at concrete executions of the
design, a feedback mechanism is needed to know whether the simu-
lated executions explore all interesting behaviors of the DUT. To this
end, various notions of functional coverage have been defined [12].
Concrete functional coverage points or groups that are derived
from the DUT specification need to be defined by the verification
engineer. In addition to the user-defined functional coverage, code
coverage metrics which are derived from the HDL implementation
of the DUT are employed in the verification process. While high
code coverage is not sufficient to declare the verification process a
success, it can serve as an indicator of the verification progress and
has been used in the past to evaluate automated stimuli generation
approaches [5].

When using a software simulator for dynamic verification, the
number of tests that can be executed daily is largely limited by
the speed at which the design can be simulated. Especially for
larger designs, FGPA based emulation or special purpose emulation
hardware can significantly speed up the verification effort. Com-
mercial special purpose accelerators support a wide range of test
bench designs and coverage feedback. However, trying to support
all techniques from software simulation on an accelerated platform
makes them complicated and expensive. FPGA-based emulation
on the other hand is more easily available with FPGAs now avail-
able for rent on public cloud infrastructure and open-source tool
support [8]. However, test bench design becomes more difficult in
this case since non-synthesizable constructs that are often used
in stimuli generation and scoreboards cannot easily be mapped to
FPGAs. Thus traditional test bench designs cannot easily be used
and some design trade-offs need to be reevaluated.

2.2 Coverage-Directed Mutational Fuzz Testing

In this section we introduce the basic coverage-directed mutational
fuzz testing components and algorithm as used by the popular soft-
ware fuzzer AFL [17] and various work that builds on top of it. A
coverage-directed mutational fuzz testing tool (fuzzer) consists of
three components: (1) A fuzz server that snapshots the program
under test and quickly resets it before every test. (2) A static or dy-
namic instrumentation pass that augments the program under test
to provide feedback about its behavior during execution. (3) A fuzz
engine which implements the algorithms to select parent inputs,
mutate them, and analyze the feedback from the instrumentation.

The program under test (PUT) is modeled as a pure function that
takes an arbitrary length byte array as input. The behavior of the
PUT should only depend on the selected input and thus a given
input precisely describes a test execution. In order to guarantee that

Algorithm 1 Coverage-guided mutational fuzzing
Given: program p, set of initial inputs I
Returns: a set of generated test inputs

1: S ← I
2: totalCoverage← ∅
3: repeat
4: for input in S do

5: for 1 ≤ i ≤ numCandidates(input) do
6: candidate← mutate(input, S)
7: coverage← run(p, candidate)
8: if coverage ⊈ totalCoverage then
9: S ← S ∪ {candidate}
10: totalCoverage← totalCoverage ∪ coverage
11: until given time budget expires
12: return S

all test results are reproducible, it is imperative that all program state
is reset in between tests. The fuzz server uses memory snapshot
techniques to perform the reset before rerunning the PUT with a
new input provided by the fuzz engine.

The goal of the instrumentation pass is to augment the program
in such a way as to provide coverage feedback for every execution.
The feedback is used by the fuzz engine to guide its search of the
input space and to come up with a test corpus that achieves a
high coverage. In order to be effective, the chosen coverage metric
needs to be lightweight enough to not slow down test execution
significantly, detailed enough to be able to guide the fuzz engine,
but also abstract enough to not overburden the fuzzer with every
little detail of the PUT behavior. The coverage feedback used by AFL
that has shown to be successful in practice for software testing is an
approximate version of branch coverage: During instrumentation
every basic block in the PUT is assigned a random ID. Once the
program takes a transition in the control flow graph, the source and
destination ID are hashed together and used to index into a 65536
entry table of 8-bit counters. The selected counter entry is then
incremented. In a post processing step, the counter values which
range from 0 to 255 are placed into 8 exponentially increasing

Name Description
bitflip 1/1 flip single bit
bitflip 2/1 flip two adjacent bits
bitflip 4/1 flip four adjacent bits
bitflip 8/8 flip single byte
bitflip 16/8 flip two adjacent bytes
bitflip 32/8 flip four adjacent bytes
arith 8/8 treat single byte as 8-bit integer, add/sub

values from 0 to 35
arith 16/8 treat two adjacent bytes as 16-bit

big/little endian integer, add/sub values
from 0 to 35

arith 32/8 treat four adjacent bytes as 32-bit
big/little endian integer, add/sub values
from 0 to 35

Figure 1: Deterministic Mutation Techniques
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buckets. The intuition behind this is that traversing an edge twice
instead of once is new and interesting, whereas going from 6 to
7 transitions is normally not relevant. This technique has good
accuracy for small to medium sized programs, is relatively easy to
implement, and has an acceptable performance overhead.

At the core of a fuzz testing system, the fuzz engine is responsible
for selecting new test inputs to be evaluated and analyzing the
resulting coverage feedback from the PUT. The algorithm (shown
in Algorithm 1) starts with an initial set of seed inputs, e.g., a set of
small PNG images when testing a PNG parser. Sometimes a single
empty input is used as a starting point. All seed inputs are placed
in the test set data structure S . In the main loop, the fuzz engine
selects one input from S and applies a set of mutations to it. Each
result of a mutation is executed by the fuzz server and the resulting
coverage is analyzed. If a new coverage point is reached, the input
that caused it, is added to S . After a user controlled timeout, the
fuzzing process terminates and the inputs in S can be used as a test
corpus.

The mutation algorithm uses two kinds of mutators: determinis-
tic and non-deterministic. A mutator is a function that takes a test
as input and modifies it in order to generate several new child tests.
An example for a deterministic mutator in AFL is the bitflip 1/1
mutation which generates one child per bit in the parent input with
the corresponding bit inverted. A list of all deterministic mutators
that are relevant to this paper can be found in Figure 1. The non-
deterministic mutations are performed in the so called havoc stage
of AFL. In each application of the havoc mutation, between 2 and
128 random mutations are performed on the parent input. A list of
all possible submutations is presented in Figure 3. While determin-
istic mutations mutate every position in the input, non-determinist
mutators randomly chose the position to mutate.

The main advantages of coverage-directed mutational fuzzing
compared to more formal techniques such as symbolic execution
are the smaller engineering effort, better scalability to large real
world programs such as web browsers, and the portability of the
approach due to its relative simplicity. The generated test corpus
contains inputs that tend to be small. If a bug is uncovered while
fuzzing (e.g., if a program crash is observed), the test input serves
as a witness of the bug and can be used to debug the problem. The
simple input definition of an array of bytes works on a wide range
of programs and the coverage feedback is carefully engineered for
good test performance.

3 FUZZ TESTING OF RTL CIRCUITS

While coverage-directed mutational fuzz testing is an input genera-
tion technique that uses coverage feedback, it cannot be directly
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Figure 2: Input Definition

Name Description
bitflip flip a random bit
interest 8 overwrite a random 8-bit integer with inter-

esting value
interest 16 overwrite a random 16-bit integer with in-

teresting value
interest 32 overwrite a random 32-bit integer with in-

teresting value
arith 8/8 treat random single byte as 8-bit integer,

add/sub one value from 0 to 35
arith 16/8 treat two random adjacent bytes as 16-bit

big/little endian integer, add/sub one value
from 0 to 35

arith 32/8 treat four random adjacent bytes as 32-bit
big/little endian integer, add/sub one value
from 0 to 35

random 8 overwrite random byte with random value
delete delete a random sequence of bytes
clone clone a random sequence of bytes
overwrite overwrite a random sequence of bytes

Figure 3: Non-Deterministic havoc Mutations

applied to the CDG problem for hardware designs: A digital cir-
cuit is not a binary file format parser that can read an arbitrary
number of bytes. Instead, it has a number of input wires that can
take different values in each cycle. In addition to that, the memory
snapshotting techniques used to reset software to a known state
before each test [17] cannot be directly applied to FPGA-accelerated
RTL simulation. Instead we need a way to quickly reset RTL state
without changing the behavior of the DUT. Furthermore, while its
notion exists in HDLs for RTL simulation, branch coverage does
not directly apply to RTL designs. Branches in the HDL source code
are mapped to multiplexers in the circuit which output one of two
input values during each cycle, which is different from sequential
software where only one branch is active at a given point in time. In
this section we therefore discuss how a test input for RTL circuits
can be defined, the work necessary to make DUTs resettable on the
FPGA, and how the notion of branch coverage can be translated to
testing RTL circuits.

3.1 Input Definition

RTL circuits are commonly represented as module hierarchy featur-
ing one top-level module that will be connected to the test harness
or external pins. In our methodology, the top-level input pins are
connected to the testing tool. We concatenate all input pins and
map the resulting bit vector to a series of bytes representing the
input values in one particular test cycle. In order to allow the fuzz
engine to apply a different value during each test cycle, we simple
concatenate single cycle test inputs to form a multi-cycle input.
We thus concatenate inputs in space and time as illustrated in Fig-
ure 2. The number of cycles of a particular test runs for is thus
determined by the number of test input bits divided by the number
of input bits to the top-level module of the DUT. Since the DUT is
reset to a known state before each test execution, the test inputs
fully describe the test execution. Reproducing coverage or assertion
violations thus only requires knowledge of the DUT and the test
input.
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3.2 Deterministic Test Execution

In order to make tests deterministic and repeatable, fuzz testing re-
quires the program or device under test to be started from a known
state. This ensures that only the test inputs affect the behavior that
will be observed by the fuzz engine and thus a test can be fully
reproduced as long as the inputs are known. Resetting a program
to a known state can require a non-trivial amount of time. The
simplest approach, to restart the program under test for every test
invocation, includes the cost of loading the program into memory
and process creation which limits the number of test executions per
second. The popular fuzzer AFL takes advantage of the fork system
call and copy-on-write optimization by the operating system to
reduce the overhead.

Quickly resetting an RTL circuit mapped onto an FPGA poses its
own set of challenges which need to be addressed in order to apply
fuzz testing to this domain. In the following sections we discuss
two major problems and how they are solved in our work: (1) for
efficiency reason, many registers are not reinitialized during device
reset; (2) memories do not feature reset circuitry and can only be
initialized one word at a time

3.3 Register Meta Reset

Reset circuitry for registers takes up space on the wafer and is
thus omitted from designs whenever possible. The initial value of
these registers is thus undefined when the DUT comes out of reset.
Classic circuit simulators deal with this fact by introducing an X
value whichmarks an uninitialized wire (in 4-state simulation) or by
randomizing the initial values of the register (in 2-state simulation).
Since this work is targeted at FPGA-accelerated simulation, we
would like to make use of a 2-state solution. Randomizing the
register values on the FPGA however is also a non-trivial endeavor
and could lead to sporadic tests. Instead, there are two promising
solutions: (1) we can treat the initial register state as part of the
input and load the values through a scan chain before each test
(2) we can reset all registers to a predefined value before each test.

In this work we implement solution 2 in a transformation pass
that works on the intermediate representation (IR) of the circuit
and adds a MetaReset wire which resets all registers in the cir-
cuit to zero. As an example Figure 4 illustrates the addition of a
MetaReset to a register description in Verilog. Our test harness
thus applies the following sequence before each individual test:
First, the MetaReset is activated for one cycle in order to initialize
each register to zero. Next the MetaReset is released and the actual
Reset of the DUT is asserted in order to take the device through
the reset procedure envisioned by its designer. During this phase it
is essential to provide deterministic inputs to the DUT because a
register might be hardwired directly to a top-level input in the orig-
inal design. We again chose all zeros as a deterministic input. This
approach is sound since starting the design with all registers set to
zero is allowed by the RTL (an X can be any value), but incomplete
since other possible values are not explored.

3.4 Sparse Memories

Memories are rarely meant to be reset when the circuit is turned
on. The concept of a memory can be mapped to a much more area
efficient implementation compared to a register, because only a

reg [31:0] r;
always @(posedge clk) begin
if (reset) begin
r <= 32'h1993;

end else begin
r <= r_next;

end
end

(a) Register With Reset

reg [31:0] r;
always @(posedge clk) begin
if (metaReset) begin
r <= 32'h0;

end else begin
if (reset) begin
r <= 32'h1993;

end else begin
r <= r_next;

end
end

end

(b) Register With MetaReset

Figure 4: Meta Reset Transformation

small number of memory words (bounded by the number of write
ports) can be updated in each cycle. This restriction sets the lower
bound for the number of cycles needed to fully reset a memory
to be the memory size in words divided by the number of write
ports. This number can be very high in practice, especially when
considering the data or program memory of a processor design.

The task of resetting memories is not as difficult as the upper
bound mentioned above might suggest. To see why it is important
to consider the details of the fuzz testing scenario proposed in this
paper: The core idea is to mutate the seed inputs as often as possible
and to evaluate every generated input on the instrumented DUT.
In order for this to be feasible, the test size and thus the number of
cycles it takes to execute a given test is relatively small. Thus the
number of writes that may occur during a single test for a given
memory is bound by the number of write ports times the number of
test cycles. If we can keep track of the memory locations that have
been written in a test execution, we are able to undo all the changes
made and thus reset the DUT on the FPGA. This solution would
require a memory for every write port to remember the addresses
that have been written to in addition to the actual memory that
stores the values. In the worst case, resetting this kind of memory
would take as many cycles as the previous test took to execute.

Going back to the observation that we will only observe a small
number of writes, we can refine the design of our resettable mem-
ory: Since the number of writes is small, most memory locations
will contain the reset value which we define to be zero, just as for
registers. The read port of such a sparse memory needs to work
in the following manner: If the address that is requested has been
written to, return the last written value. If the address that is re-
quested has never been written to, it is uninitialized and thus we
need to return zero. We can keep track of the addresses that have
been written to by using a content addressable memory (CAM).
The CAM can also be used to map the requested address to a much
smaller memory that only needs to be able to hold as many val-
ues as may be written during a maximum length test. Thus, this
kind of sparse memory needs often times much less SRAM than the
original version. The CAM can easily be reset in a single cycle by
connecting the valid bit of each entry to the Reset signal of the
DUT. Implementing a custom transformation pass on the RTL of
the DUT, we can automatically replace memories by a sufficiently
large sparse memory.

Using the MetaReset and the SparseMem transformations we can
ensure that the DUT can be reset to a fully deterministic state in
only two clock cycles. This allows for rapid and repeatable test
execution, thus enabling fuzz testing of RTL circuits on FPGAs.
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3.5 Coverage Definition

We require precise definitions of our coverage metrics for two rea-
sons: (1) To define an end-to-end metric that can be used to measure
how well our implementation of mutational fuzz testing for RTL
compared to a baseline technique; (2) To define an intermediate
coverage metric that serves as feedback to the fuzz engine in or-
der to guide the search of the input space. While prior industrial
work [2, 14, 15] uses functional coverage models manually specified
by verification engineers, these test suites are expensive to create
and thus generally unavailable to the broader research community.
Instead, we focus on automatic coverage that can be derived directly
from our suite of open-source benchmark circuits. This kind of cov-
erage has been used in related academic [13] and industrial [5]
work.

Most automatic coverage definitions focus on the description of
the circuit expressed in a common HDL like Verilog or VHDL [12].
However, our system works with any RTL circuit regardless of
the hardware description or generation language it is written in.
We thus define our coverage metric in relation to the synthesiz-
able structure of the circuit as represented in an HDL-agnostic IR.
This also ensures that we can synthesize and thus collect coverage
information during FPGA-accelerated simulation.

We look at mux control coverage which treats each 2:1 multi-
plexer select signal as an independent cover point. Multiplexers
with more than two inputs can be trivially converted into a series
of 2:1 multiplexers. We chose this metric as it can be automatically
applied to any RTL circuit as long as the multiplexers are explicitly
modelled. It is also well suitable for FPGA-accelerated simulation
since we do not need any additional circuitry to evaluate the cover
points.

For a mux control condition to be fully covered, we require that
it evaluates to true as well as to false during a single test. On the
FPGA, this requires only minimal additional hardware — two 1 bit
registers and two 1 bit multiplexers — to remember the observed
values. We combine the coverage observed in multiple tests by
calculating the union of mux control conditions covered. Note that
by this definition it is not enough for a condition to always be true
in one test and always be false in another test to be counted as
covered. Instead, both values need to be observed in a single test.

The coveraдe used in Algorithm 1 is thus defined to be the set
of multiplexers in the DUT which had their control signal toggle
during test execution. If a test input manages to toggle a mux
control signal that had never been toggled before, it is considered
interesting and is added to the test data structure S .

3.6 Mutation Algorithms

Our input definition allows us to directly implement the mutation
heuristics from the successful AFL fuzz testing tool [17] presented
in Section 2.2. Similar to AFL, every new entry in our test set is
first mutated with the deterministic mutation techniques listed
in Figure 1. Once we run out of deterministic mutations to apply,
we switch to our implementation of the AFL havoc stage which
makes use of the mutations presented in Figure 3. For any mutation
that changes the size of the input array, we pad with zeros when
necessary in order to maintain an input size that is a multiple of
the bytes needed in a single cycle.

3.7 Constrained Interfaces

In hardware testing, many interfaces make assumptions that have
to be respected by the stimuli generator. An example for this is a
memory bus which can rely on the fact that any participant will
respect the protocol specification. To this end, a test input generator
in traditional directed random testing needs to be implemented in
such a way as to not violate the guarding assumptions. A similar
solution could be applied to fuzz testing by implementing an RTL
adapter that takes the unconstrained inputs from the fuzzer and —
by construction — generates valid bus transactions from them.

However, the feedback-directed manner of the fuzzing approach
allows for a more convenient solution: We observe that modern
HDLs allow designers to specify interface constraints through
assume statements in the DUT source code. In our benchmarks
which make extensive use of the TileLink bus, this mechanism
is used to implement a synthesizable bus monitor which detects
invalid transactions. Taking the conjunction of all assumptions in
the monitor over all cycles in a test, we can derive a binary signal
which indicates whether the given test inputs exercise the DUT in
a valid manner. This valid signal is included by the test harness
on the FPGA with the regular mux condition coverage as feedback
to the fuzz engine. The simplest way of using this signal is to re-
ject all invalid inputs before updating the coverage map. This is
comparable to rejection sampling in random directed testing.

The authors of the open source Java fuzz testing tool JQF 1 have
extended the core fuzz testing method described in Algorithm 1 to
take advantage of the feedback regarding the validity of a generated
test input. They keep two separate coverage maps: one for the total
coverage and one for the coverage achieved by valid inputs only.
A new input is added to the test set S when it achieves new total
coverage or if it is valid and achieves new valid coverage. This ex-
tension allows the fuzz engine to discover valid inputs from invalid
ones. We implemented the JQF technique using two coverage maps
in our testing tool.

4 IMPLEMENTATION

We implemented the proposed testing methodology in an open-
source tool called rfuzz2. The first part of our tool is an instru-
mentation and harness generation component, which works on
arbitrary RTL circuits described in the FIRRTL IR [6]. It automat-
ically generates a test harness for software or FPGA-accelerated
simulation. The second part of our tool is the actual input generator
which connects to the test harness running in software or on the
FPGA to provide DUT inputs and analyse the resulting coverage.

Our tool is language-agnostic since it can work on arbitrary
RTL designs expressed in the FIRRTL IR [6]. Once a target design
is translated into FIRRTL IR from its source HDL, we can apply
compiler passes for the target RTL regardless of its source HDL.
rfuzz is also fully automated as the target RTL is instrumented
through compiler passes and the fuzzer uses the target information
generated by the compiler. Only some parameters to the fuzzer
such as the mutation technique and seed inputs to use need to be
specified by the user.

1https://github.com/rohanpadhye/jqf
2https://adept.eecs.berkeley.edu/papers/rfuzz
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Figure 5: Share Memory Implementations for Communication between the Fuzzer and the Test Harness

4.1 Instrumentation

Custom transforms are implemented as compiler passes that plug
into the FIRRTL compiler. We use the compiler’s dead code elimi-
nation and constant folding to minimize the redundant expressions
before instrumenting the coverage signals. This helps us keep the
size of the automated coverage feedback as small as possible.

The MuxCov (Section 3.5) pass automatically identifies interme-
diate coverage wires by traversing the circuit description. Cover-
age wires that are automatically identified by the circuit traversal
are then rewired through the module hierarchy to be available as
outputs of the top-level module so that coverage wire values are
observed by the test harness. This pass also generates a meta data
file that contains the information about the coverage and the input
pins in the RTL design for the test harness generation.

The details of ourMetaReset and SparseMem passes are explained
in Section 3.3 and Section 3.4, respectively.

4.2 Test Harness Generation

The test harness generator automatically generates a wrapper for
any RTL design by consuming the target design information, in-
cluding input and coverage pins generated, by the instrumentation
passes.

It instantiates the instrumented DUT and connects the cover-
age pins inserted by the instrumentation pass to toggle detection
circuitry. It also automatically derives a buffer format definition
for the required input and coverage size and emits Verilog as well
as C++ code for the software and FPGA-accelerated simulation
environments to interface with the buffers.

The test harness is further automatically transformed by FIR-
RTL compiler passes for efficient token-based simulation on the
FPGA [8], dramatically reducingmanual effort for FPGA-accelerated
simulation. Our tool also automatically generates the buffer stream
unit mapped on the FPGA and integrates it with the test harness
for communication with the fuzzer.

Finally, the test harness generator emits the target-specific in-
formation about coverage counters, top-level inputs, and buffer
formats, which is consumed by the fuzzer to test a particular circuit
design.

Name Input Width Mux Cover Points Lines of FIRRTL
Sodor1Stage 35 714 3617
Sodor3Stage 35 746 4021
Sodor5Stage 35 945 4088

I2C 165 301 2373
SPI 167 323 4046
FFT 259 195 1545

Rocket Chip 239 4517 43856
Table 1: Benchmarks

4.3 Fuzzer

Whereas the DUT and the coverage counters can be synthesized
onto an FPGA, the input generation and coverage analysis is per-
formed by a fast fuzzer on the CPU. Implementing this part in
software allows for greater flexibility to investigate new mutation
and feedback strategies. While an integrated solution on the FPGA
could be even fast, we achieve good performance with a high band-
width DMA channel.

Figure 5 shows how the fuzzer efficiently communicates with the
test harness through share memory buffers. Note that the fuzzer is
unaware of whether the test harness is run in software simulation
or on the FPGA. The fuzzer allocates multiple buffers in the shared
memory region, and test inputs and coverage feedback are batched
to the buffers (Figure 5(a)). When the test harness is run in software
simulation, the software simulator directly accesses these buffers.
To copewith high round-trip latency betweenCPU and FPGA,when
the test harness is run in the FPGA, theses buffers are transferred
through a high bandwidth DMA to the buffer stream unit that
post-processes the data in the buffers (Figure 5(b)).

5 EVALUATION

We evaluate the proposed testing methodology using our rfuzz
tool on a range of open-source RTL designs:

(1) TileLink Peripheral IP: These consist of a SPI and I2C pe-
ripheral IP which are used in the commercial SiFive Freedom
SoC platform 3. They interface with the fuzzer through a
TileLink port which includes a synthesizable bus monitor.
The feedback from the monitor is used to ensure that only
valid inputs are included in the reported coverage.

(2) FFT: As an example of a DSP block, we use a FFT implemen-
tation produced by an open-source FFT generator 4.

(3) RISC-V Sodor Cores: We selected three different educa-
tional RISC-V cores maintained by the LibreCores project 5.
In order to directly affect the executed instructions, we cre-
ate a special fuzz testing top-level module which — instead
of instantiating a scratchpad memory — directly wires the
instruction memory interface to the top-level inputs. This
allows our testing tool to act as the instruction memory and
directly supply the core with instructions to execute.

(4) RISC-V Rocket Core: In order to test the scalability of our
approach, we use the RISC-V Rocket Chip [1] as our final
benchmark. This 64-bit in order core is supported by indus-
try and is able to boot the Linux operating system. Its size
impacts the execution speed of software simulation and thus

3https://github.com/sifive/sifive-blocks
4https://github.com/ucb-art/fft
5https://github.com/ucb-bar/riscv-sodor
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Sodor3Stage Rocket
Verilator 345 kHz 6.89 kHz
FPGA 1.7MHz 1.46MHz

Speedup 4.9x 212x
Table 2: Speedup: FPGA vs Software Simulation

allows us to evaluate the benefits of an FPGA-accelerated
simulation approach to the CDG problem.

A detailed list of the benchmarks is available in Table 1.
For our evaluation we use software simulation on the public

AWS cloud infrastructure to quickly evaluate various configura-
tions in parallel. Each fuzz testing run was performed on its own
virtual core. Since several of the proposed mutation techniques
make random decisions when generating new test inputs, we rerun
experiments four times with different seeds to the pseudo random
number generator and average the results.

During each testing run, we save all generated inputs that make
it into the test set S to disk. In order to evaluate the achieved cover-
age independently from our testing tool, we use a series of Python
scripts to calculate end-to-end coverage metrics. Since speed does
not matter in this context, we are able to restart the software simu-
lation for each entry can thus be confident that various tests are
indeed independent and do not affect each other. The end-to-end
analysis scripts also exclude any invalid inputs as indicated by an
assumption failure during the test run. We can thus ensure that
— independent from rfuzz — our coverage numbers only include
valid inputs as checked by the monitors and assume statements. All
coverage in this section is measured as a fraction of the maximum
mux control toggle coverage as indicated by the number of multi-
plexers in the design. It might be impossible for some mux control
wires to be influenced from the inputs controlled by the fuzzer and
thus there is no guarantee that 100 % coverage can be achieved.

5.1 Comparison to Random Testing

Similar to our proposed technique, random testing is applicable to
any RTL circuit without DUT specific setup costs. We implement
random testing in our tool in order to measure whether coverage-
directed mutational fuzz testing provides any advantages over the
simple random baseline. In order to implement the baseline we
replace the normal mutation algorithms that modify a given test
input to instead generate a new independent random input. Figure 6
shows the results for all of our benchmarks. As we can see, the ran-
dom baseline quickly saturates, whereas the coverage-guided fuzz
testing is able to make progress by mutating previously discovered
inputs.

5.2 Constrained Interfaces

As explained in Section 3.7 we can deal with constrained interfaces
by observing the assumption failures that result from invalid test
inputs. All tests in Figure 6 used the JQF technique to generate valid
inputs. As we can see, this provides a significant improvement over
the random baseline for the TileLink I2C and SPI peripherals.

Local Machine (Verilator) Amazon F1 (FPGA)
CPU AMD Ryzen 7 1700X 8 vCPUs

Memory 32GB 122GB
FPGA - Xilinx UltraScale+ VU9P

DMA bandwidth - 1.5GB/s
Table 3: Machine Specifications for Speedup Evaluations
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(a) I2C
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(b) SPI
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(c) FFT
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(d) Sodor 1 Stage
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(e) Sodor 3 Stage
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(f) Sodor 5 Stage

Figure 6: Mux Control Toggle Coverage over Time: rfuzz vs.

Random Testing

5.3 Software vs. FPGA-Accelerated Simulation

While for small circuits, generating the test inputs and analyzing
the resulting coverage takes the majority of time, this changes as
the design becomes bigger. For large designs such as a real-world
64-bit processor, the simulation time is the major bottleneck. As
mentioned throughout Section 3, we took specific care to design
our testing methodology in such a way that the device under test
can be simulated on the FPGA.

To show how FPGA-accelerated simulation enables us to scale
to testing complete large-scale systems we measured the execu-
tion speed for a small educational processor (Sodor3Stage) and a
productized in-order processor (Rocket). Table 3 shows the specifi-
cations for the machines we used in this evaluation. We compiled
bitstreams for FPGA-accelerated simulations using Vivado 2017.1
and both designs closed timing at 75MHz. The FPGA synthesis
time was 2~5 hours.

Table 2 shows the speedup of FPGA-accelerated simulation over
software simulation for two designs. As expected, we can achieve
significant speedup for a complex design, but even a small design
can benefit from FPGA-accelerated simulation. Notably, software
simulation slows down significantly with complex designs while
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FPGA-accelerated simulation provides high simulation rates regard-
less of design complexities. With FPGA-accelerated simulation, the
simulation speed is bottlenecked by the speed at which our fuzzing
software analyses coverage and generates new inputs. Thus shift-
ing some of that functionality from the fuzzer to the FPGA could
significantly improve the simulation rates in the future.

6 RELATEDWORK

The prior work most similar to rfuzz is MicroGP [13] which fo-
cuses on maximizing statement coverage in the HDL description of
various processor implementations. It uses an instruction template
library in order to generate and recombine programs which allows
for more powerful mutation techniques but increases the amount of
setup work needed. It also restricts this line of work to the domain
of processor testing, whereas coverage-directed fuzz testing also
shows promising results when testing various communication IP.
Another difference is that MicroGP is clearly targeted towards slow
DUT execution in a software simulation. An industrial evaluation
reports that simulation takes 30 times more resources than the core
genetic algorithm [5]. rfuzz on the other hand is geared towards
fast FPGA-accelerated simulation, using a simpler algorithm to keep
up with the test execution speed provided by such a platform.

There are various other approaches to the CDG problem that do
not rely on a modified genetic algorithm. Tarsiran et al.[14] analyse
the circuit in order to improve the biases for an existing random
input generator. Our work on the other hand does not assume
that a generator exists. Nativ et al. [10] propose a system that uses
coverage feedback to direct a random input generator. However,
this system also relies on rules unique to a single DUT that need to
be specified by a verification expert. Fine et al. [3] present coverage
directed test generation using Bayesian Networks to guide the input
generation. While the network weights are learned automatically,
the network topology is DUT specific and needs to be designed by
a verification engineer. Wang et tal. [16] use a manually designed
abstract model of the DUT to automatically generate inputs that
maximize coverage.

bluecheck [11] is a synthesizable test bench framework that
takes advantage of the BlueSpec HDL. Similar to our work, it is
directly targeted at FPGA-based testing. However the authors re-
port some issues trying to reproduce failing test cases discovered
with the FPGA emulation. Our system employs the MetaReset and
SparseMem techniques in order to ensure that the FPGA-accelerated
simulation results are deterministic. While bluecheck depends on
the BlueSpec HDL, rfuzz is HDL-agnostic. Our work focuses only
on maximising RTL coverage whereas bluecheck can also generate
checks to find design bugs while running on the FPGA.

The technique presented by Gent et al. [4] is fully automated
and also works directly on the RTL circuit just like rfuzz but uses
software simulation only, whichmay not scale to larger designs. The
extended coverage metrics proposed by the authors could be added
to our fuzzing setup in order to provide more detailed guidance to
our fuzzer.

7 CONCLUSION

In this paper we show how coverage-directed mutational fuzz test-
ing can be used to automatically test arbitrary RTL circuits on
FPGAs. We provide a high-performance implementation of this
technique. Our evaluation shows consistent improvements over
random testing, especially for circuits that provide feedback on test
input validity.
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